Comparison Studies of Electrical Discharge Machining (EDM) Process Model for Low Gap Current

Article Preview

Abstract:

This paper aims to compare the material removal rate, ν between a Dimensional Analysis (DA) model, an Artificial Neural Network (ANN) model and an experimental result for a low gap current of an Electrical Discharge Machining (EDM) process. The data analysis is based on a copper electrode and steel workpiece materials. The DA and ANN model that have been developed and reported earlier by authors are used to compare the material removal of EDM process. The result indicated that the ANN model provides better accuracy towards the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

650-654

Citation:

Online since:

January 2012

Export:

Price:

[1] K. H. Ho and S. T. Newman, State of the art electrical discharge machining (EDM), International Journal of Machine Tools & Manufacture, vol. 43, p.1287–1300, (2003).

DOI: 10.1016/s0890-6955(03)00162-7

Google Scholar

[2] K. P. Rajurkar, Manufacturing and Automation, in Handbook of Design USA: Wiley, (1994).

Google Scholar

[3] S. Kuriakose and M. S. Shunmugam, Multi-objective optimization of wireelectro discharge machining process by non-dominated sorting genetic algorithm, J. Mater. Process. Technol., (2005).

DOI: 10.1016/j.jmatprotec.2005.04.105

Google Scholar

[4] K. Wang, H. L. Gelgele, Y. Wang, Q. Yuan, and M. Fang, A hybrid intelligent method for modelling the EDM process, Int. J. Machine Tools Manuf., vol. 43, p.995–999, (2003).

DOI: 10.1016/s0890-6955(03)00102-0

Google Scholar

[5] C. L. Lin, J. L. Lin, and T. C. Ko, Optimisation of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method, International J. Adv. Manuf. Technol., vol. 19, p.271–277, (2002).

DOI: 10.1007/s001700200034

Google Scholar

[6] J. L. Lin and C. L. Lin, The use of grey-fuzzy logic for the optimization of the manufacturing process, J. Mater. Process. Technol., vol. 160, p.9–14, (2005).

Google Scholar

[7] J. C. Su, J. Y. Kao, and Y. S. Tarng, Optimisation of the electrical discharge machining process using a GA-based neural network, Int. J. Adv. Manuf. Technol., vol. 24, p.81–90, (2004).

Google Scholar

[8] C. Fenggou and Y. Dayong, The study of high efficiency and intelligent optimization system in EDM sinking process, J. Mater. Process. Technol., vol. 149, pp.83-87, (2004).

DOI: 10.1016/j.jmatprotec.2003.10.059

Google Scholar

[9] A. Yahya and C. D. Manning, Determination of material removal rate of an electro-discharge machine using dimensional analysis, Journal of physics D: Applied Physics, vol. 37, p.1467–1471, (2004).

DOI: 10.1088/0022-3727/37/10/008

Google Scholar

[10] A. Yahya, Digital Control of an Electro Discharge Machining (EDM) system, PhD Thesis, Loughborough university, (2005).

Google Scholar

[11] D. Mandal, S. K. Pal, and P. Saha, Modelling of electrical discharge machining process using backpropagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II, Journal of Materials Processing Technology, vol. 186, pp.154-162, (2007).

DOI: 10.1016/j.jmatprotec.2006.12.030

Google Scholar

[12] M. R Patel, M. A. Barrufet, P. T. Eubank and D. D. Dibinto 1989 Theoretical models of the electrical discharge machining process. II. The anode erosion model J. Appl. Phys. 66 4104-4111.

DOI: 10.1063/1.343995

Google Scholar

[13] P. R. Kamlakar and Wei-Min W 1997 Advances in EDM monitoring and control systems u using modern control concepts Int. J. Elec. Mach. 2 1 – 8.

Google Scholar

[14] A. Behrens and M. P. Witzak 1998 An hierarchical process control system for highly efficient electro-discharge machining 12th Int. Symp. for Electromachining (Germany) , p.149 – 155.

Google Scholar

[15] Y. Imai et. al, 1998 Improvement of Machining Accuracy in die-sinking EDM using disturbance observer 12th Int. Symp. for Electromachining (Germany) , pp.321-329.

Google Scholar

[16] F. Klocke et al. 1998 Optimization of the EDM sinking process using neuro-fuzzy control 12th Int. Symp. for Electromachining (Germany) , p.163 – 172.

Google Scholar

[17] Y. S. Liao 1998 A new fuzzy control system for the adaptive control of WEDM process 12th Int. Symp. for Electromachining (Germany) , p.193 – 202.

Google Scholar

[18] H. Zheng et. al A fuzzy controller for EDM process 1998 12th Int. Symp. for Electromachining (Germany) , p.185 – 191.

Google Scholar

[19] W. M. Wang and K. P. Rajurkar 1990 Monitoring, Modeling and control of EDM Mon. and ctrl. For manfc. Proc., ASME PED vol 44 pp.393-406.

Google Scholar

[20] M. Kocher and P. Guglielmetri Modelling and simulation of an EDM die sinking machine Proc. ISEM XI (Lausanne), pp.105-113.

Google Scholar

[21] H. L. Langhaar 1951 Dimensional Analysis and Theory of Models (New York: Wiley).

Google Scholar

[22] T. Szirtes 1997 Applied Dimensional Analysis and Modeling (New York: McGraw-Hill).

Google Scholar

[23] J. F Douglas An introduction to dimensional analysis for engineers (London: Sir Isaac Pitman & Sons Ltd. ).

Google Scholar

[24] T. Andromeda, A. Yahya, N. H. H. Khamis, 2010 Predicting Material Removal Rate of Electrical Discharge Machining (EDM) using Artificial Neural Network for low Igap current, ICEM2010, Kuala Lumpur, Malaysia, November.

DOI: 10.1109/inecce.2011.5953887

Google Scholar

[25] S. Haykin, 1999 Neural Networks: A Comprehensive Foundation. Englewood Cliffs, NJ: Prentice-Hall.

Google Scholar