Effect of Process Parameters on Jet Length in Electrospraying of Thermoplastic Polymer

Article Preview

Abstract:

Electrospraying is inexpensive and an effective way to produce submicron range coating. Spray Angle and Jet Length are important characteristics that affect coating quality while polymer solution subjected to electrospraying. It was of interest to determine the effect of the process parameters on Jet Length. In this paper, an attempt was made to apply the electrospraying concept for coating textile surfaces. Series of experiments were carried out employing different settings of process parameters such as voltage, nozzle-collector distance and polymer concentration. Thermoplastic polyurethane dissolved in tetrahydrofluran was used as a solution. The results provide some insight into the effect of electrospraying process parameters on Jet Length

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

1146-1150

Citation:

Online since:

June 2012

Export:

Price:

[1] T. G. I, Proc. Roy. Soc. London (A313), 448-453 (1969).

Google Scholar

[2] Information on http://www.newobjective.com/electrospray>. (2004)

Google Scholar

[3] C. Renekar D.H., Nanometre Diameter Fibres Produced by Electrospinning., Nanotechnology, 7, 216-233 (1996).

Google Scholar

[4] Y. M. H. Shin, M.M.; Brenner, M.P.; Rutiedge, G.C. , Experimental Characterization of Electrospinning: The Electrically Forced Jet and Instabilities,, Polymer 42, 9955-9967 (2001).

DOI: 10.1016/s0032-3861(01)00540-7

Google Scholar

[5] A. Jaworek, and A. T. Sobczyk, Electrospraying Route to Nanotechnology: An Overview, Journal of Electrostatics, 66(3-4), 197-219 (2008).

DOI: 10.1016/j.elstat.2007.10.001

Google Scholar

[6] A.Jadhav, L Wang et al, Study of Electrospraying Characteristics of Polymer solution Coating on Textile substrate, Advanced Material Research, 332-334,P710(2011)

DOI: 10.4028/www.scientific.net/amr.332-334.710

Google Scholar

[7] K. L. C. R. Chandrasekhar, Electrostatic Spray Assisted Vapour Deposition of Fluorine Doped Tin Oxide, Journal of Crystal Growth, 231(1-2), 215-221 (2001).

DOI: 10.1016/s0022-0248(01)01477-4

Google Scholar

[8] T. Ciach, Microencapsulation of Drugs by Electro-Hydro-Dynamic Atomization, International Journal of Pharmaceutics, 324(1), 51-55 (2006).

DOI: 10.1016/j.ijpharm.2006.06.035

Google Scholar

[9] M. S. W. Kuran, T. Listos, C. Debek and Z. Florjanczyk, New Route to Oligocarbonate Diols Suitable for the Synthesis of Polyurethaneelastomers, Polymers, 41, 8531 (2000).

DOI: 10.1016/s0032-3861(00)00197-x

Google Scholar

[10] R. G. B. a. T. W. H. D.M. Crawford, Strain Effects on Thermal Transitions and Mechanical Properties of Thermoplastic Polyurethaneelastomers, Thermochim. Acta 323, 53 (1998).

Google Scholar

[11] E. H. J. J.H. Hong, H.S. Lee, D.H. Baik, S.W. Seo and J.H. Youk, , Electrospinning of Polyurethane/Organically Modified Montmorillonite Nanocomposites, Journal of Polymer Science Part B: Polymer Physics, 43(22), 3171-3177 (2005).

DOI: 10.1002/polb.20610

Google Scholar

[12] I. K. K. a. T. M. S. Kidoaki, Structural Features and Mechanical Properties of in Situ-Bonded Meshes of Segmented Polyurethane Electrospun from Mixed Solvents,, J. Biomed. Mater. Res. Part B: Appl. Biomater., 76 (2006).

DOI: 10.1002/jbm.b.30336

Google Scholar

[13] M. I. T. Matsuda, H. Inoguchi, I.K. Kwon, K. Takamizawa and S. Kidoaki,, Mechano-Active Scaffold Design of Small-Diameter Artificial Graft Made of Electrospun Segmented Polyurethane Fabrics, J. Biomed. Mater. Res. Part A 73, 125 (2005).

DOI: 10.1002/jbm.a.30260

Google Scholar

[14] H. Y. K. D.I. Cha, K.H. Lee, Y.C. Jung, J.W. Cho and B.C. Chun,, Electrospun Nonwovens of Shape-Memory Polyurethane Block Copolymers, J. Appl. Polym. Sci, 96, 460 (2005).

DOI: 10.1002/app.21467

Google Scholar