The Influences of Annealing Temperature on the Crystal Phase and Microstructure of the WO3 Thin Film

Article Preview

Abstract:

The tungsten oxideWO3 thin film was prepared by sol-gel process through peroxotungstic acid (PTA). The crystal phase and surface morphological features change at different annealing temperatures. The WO3 thin film is amorphous at 300 °C. When the annealing temperature is increased to 400 °C, it becomes monoclinic phase. The phase begins to become triclinic at 550 °C. The phase then changes to orthorhombic phase at 750 °C. With the increasing of the annealing temperature, the continuum of the WO3 thin film is broke and the gabs among grains become larger. The WO3 thin film is almost disappear after annealed at 850 °C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 562-564)

Pages:

7-10

Citation:

Online since:

August 2012

Export:

Price:

[1] Deb SK: Sol. Energy Mater. Sol. Cells. Forum Vol. 92 (2008), pp.245-258.

Google Scholar

[2] M. Stolze, B. Camin, F. Galbert, U. Reinholz and L.K. Thomas: Thin Solid Films Forum Vol. 409 (2009), pp.254-264.

DOI: 10.1016/s0040-6090(02)00058-5

Google Scholar

[3] M. Giannouli and G. Leftheriotis: Sol. Energy Mater. Sol. Cells. Forum Vol. 95 (2011), p.1932-(1939).

Google Scholar

[4] Wei Wu, Qingkai Yu, Jie Lian, Jiming Bao, Zhihong Liu and Shin-Shem Pei: J. Cryst. Growth. Forum Vol. 312 (2010), pp.3147-3150.

Google Scholar

[5] Jesús M. Ortega, Arturo I. Martínez, Dwight R. Acosta and Carlos R. Magaña: Sol. Energy Mater. Sol. Cells. Forum Vol. 90 (2006), pp.2471-2479.

Google Scholar

[6] J. Zhang, X.L. Wang, X.H. Xia, C.D. Gu and J.P. Tu: Sol. Energy Mater. Sol. Cells. Forum Vol. 98 (2011), pp.2107-2112.

Google Scholar

[7] Yoshiaki Suda, Hiroharu Kawasaki, Tamiko Ohshima and Yoshihito Yagyuu: Thin Solid Films. Forum Vol. 516 (2008), pp.4397-4401.

DOI: 10.1016/j.tsf.2007.10.023

Google Scholar

[8] Simona Badilescu and P.V. Ashrit: Solid State Ionics. Forum Vol. 158 (2003), pp.187-197.

Google Scholar

[9] Wei Wang, Yongxin Pang and Simon N. B. Hodgson: J. Sol-Gel. Sci. 58 (2011), pp.135-141.

Google Scholar

[10] M. Deepa, P. Singh, S.N. Sharma and S.A. Agnihotry: Sol. Energy Mater. Sol. Cells. Forum Vol. 90 (2006), pp.2665-2682.

Google Scholar

[11] Apichon Watcharenwong, Wilaiwan Chanmanee, Norma R. de Tacconi, C. Ramannair Chenthamarakshan, Puangrat Kajitvichyanukul and Krishnan Rajeshwar: J. Electroanal. Chem. Forum Vol. 612 (2008), pp.112-120.

DOI: 10.1016/j.jelechem.2007.09.030

Google Scholar

[12] A. Rougier, K. Sauvet and L. Sauques: Ionics. Form Vol. 14 (2008), P. 99-105.

Google Scholar

[13] A. Al Mohammad and M. Gillet: Thin Solid Films. Form Vol. 408 (2002), pp.302-309.

Google Scholar

[14] Hayk H. Nersisyan, Hyung ll Won, Chang Whan Won and Kyu C. Cho: Powder. Technol. Form Vol. 189 (2009), pp.422-425.

Google Scholar

[15] Baserga A, Russo V, Di Fonzo F, Bailini A, Cattaneo D, Casari CS, Bassi AL and Bottani CE: Thin Solid Films. Forum Vol. 515 (2007), pp.6465-6469.

DOI: 10.1016/j.tsf.2006.11.067

Google Scholar

[16] Cremonesi A, Djaoued Y, Bersani D and Lottici PP: Thin Solid Films. Forum Vol. 516 (2007), pp.4128-4132.

DOI: 10.1016/j.tsf.2007.10.075

Google Scholar

[17] K.P.S.S. Hembram, Rajesh Thomas and G. Mohan Rao: Appl. Surf. Sci. Forum Vol. 256, (2009), pp.419-422.

Google Scholar

[18] L Zhou, Q Ren, X Zhou, J Tang, Z Chen and C Yu: Micropor. Mesopor. Mat. Forum Vol. 109, (2008), pp.248-257.

Google Scholar