Design of Data Acquisition System Based on LabVIEW

Article Preview

Abstract:

Based on LabVIEW, this paper presents a design scheme of data acquisition, which it proposes using computer and ordinary data collection card as the main hardware and LabVIEW as software development platform, thus constructs the virtual instrument system for signal acquisition. The system can realize synchronous data acquisition of single channel or multi-channel signal, as well as real-time display and preservation. The practice shows that this scheme can not only effectively play performance of ordinary data acquisition card, but also reduce greatly program development time and beautify interface through LabVIEW which has powerfully visual human-machine interface editor and graphical programming function.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

808-813

Citation:

Online since:

September 2012

Export:

Price:

[1] B. Zhang, L. Liu, G. Gao and P. Zhao: Data Acquisition and Signal Analysis Based on LabVIEW, Instrument Tech. and Sensor, in Chinese, No. 12 (2007), pp.74-75.

Google Scholar

[2] Y. H. Tian, C. J. Hang, C. Q. Wang, G. Q. Ouyang, D. S. Yang and J. P. Zhao: Reliability and failure analysis of fine copper wire bonds encapsulated with commercial epoxy molding compound, Microelectron. Reliab., vol. 51, no. 1(2011), pp.157-165.

DOI: 10.1016/j.microrel.2010.06.004

Google Scholar

[3] Y. Xu and J. Li: Development of Data Collection and Process System for Complex Surfaces Pressure with LabVIEW, Light Industry Machinery, in Chinese, Vol. 27, No. 4(2009), pp.79-82.

Google Scholar

[4] J H Zhang, J Zhang and L Yang: Effects of the Thermocompression Bonding on the Microstructure and Contact Resistance for the Ultrafine Pitch Chip-on-Glass Packaging with Nonconductive Film, J. Electron. Packaging, vol. 132(2010), p.044501.

DOI: 10.1115/1.4002898

Google Scholar

[5] Z. Zhao, S. Deng and Y. Tan: Data Collection and Analysis System Based on LabVIEW, Computer&Digital Engi., in Chinese, Vol. 38, No. 5(2010), pp.81-83.

Google Scholar

[6] W. Li, R. Tian and L. Yi: The System of Data Acquisition and Signal Analysis Based on LabVIEW, Modern Electr, Tech., in Chinese, Vol. 28, No. 20(2005), pp.10-12.

Google Scholar

[7] B. Xie, C. Chen and B. Zhen: Design of Data Acquisition and Signal Processing System Based on LabView, Modern Electr. Tech., in Chinese, Vol. 34, No. 14(2011), pp.173-175.

Google Scholar

[8] J. Li, Liu L., L. Deng, B. Ma, F. Wang and L. Han: Interfacial microstructures and thermodynamics of thermosonic Cu-wire bonding, IEEE Electr. Device L, vol. 32, No. 10(2011), pp.1433-1435.

DOI: 10.1109/led.2011.2161749

Google Scholar

[9] Y. Liu and X. Bu: Development of Data Acquisition and Wireless Communication System Based on LabVIEW, Measurement and Control Tech., in Chinese, Vol. 25, No. 2(2006), pp.22-24.

Google Scholar

[10] H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen and V. L. Acoff: Behavior of intermetallics, aluminum oxide and voids in Cu-Al wire bonds, Acta Materialia, vol. 59, no. 14(2011), pp.5661-5673.

DOI: 10.1016/j.actamat.2011.05.041

Google Scholar

[11] J. Li, L. Han, J. Duan, J. Zhong, Interface Mechanism of Ultrasonic Flip Chip Bonding, Appl. Phys. Lett., Vol. 90, (2007), p.242902.

DOI: 10.1063/1.2747673

Google Scholar

[12] B. I. Noh, J. M. Koo, J. L. Jo, and S. B. Jung: Application of Underfill for Flip-Chip Package Using Ultrasonic Bonding, JPN. J. Appl. Phys., vol. 47, no. 5(2008), pp.4257-4261.

DOI: 10.1143/jjap.47.4257

Google Scholar

[13] S. Murali, N. Srikanth and C. J. Vath III: Effect of wire size on the formation of intermetallics and Kirkendall voids on thermal aging of thermosonic wire bonds, Mater. Lett., vol. 58, no. 25(2004), pp.3096-3101.

DOI: 10.1016/j.matlet.2004.05.070

Google Scholar

[14] S. Lin and F. Yang: The Research of Multichannel DAQ System Based on LabVIEW, Shanxi Electr. Tech., in Chinese, No. 3(2009), pp.18-20.

Google Scholar

[15] U. Geissler, J. Funck, M. Schneider-Ramelow, H. J. Engelmann, I. Rooch,W. H. Muller, and H. Reichl: Interface Formation in the US-Wedge/Wedge-Bond Process of AlSi1/CuNiAu Contacts, J. Electron. Mater., vol. 40, no. 2(2011), pp.239-246.

DOI: 10.1007/s11664-010-1439-2

Google Scholar

[16] J. Li, J. Duan, L. Han and J. Zhong: Microstructural characteristics of Au/Al bonded interfaces, Mater. Charact. Vol. 58(2007), pp.103-107.

DOI: 10.1016/j.matchar.2006.03.018

Google Scholar

[17] H. Ji, M. Li, J. Kim, D. Kim and C. Wang: Nano features of Al/Au ultrasonic bond interface observed by high resolution transmission electron microscopy, Mater. Charact., vol. 59(2008), pp.1419-1424.

DOI: 10.1016/j.matchar.2008.01.001

Google Scholar

[18] H. Kim, J. Y. Lee, K. W. Paik and K. W. Koh: Effects of Cu/Al Intermetallic Compound (IMC) on Copper Wire and Aluminum Pad Bondability, IEEE T. Compon. Pack. T., vol. 26, no. 2(2003), pp.367-374.

DOI: 10.1109/tcapt.2003.815121

Google Scholar

[19] L. Zou, X. Wang and L. Qian: Design and Implementation of 1 GHz High Speed Data Acquisition System, Sys. Engi. and Elec., Vol. 20, No. 1(2009), pp.55-59.

Google Scholar

[20] X. Yue, Drakakis, Lim and Radomska: A Real-Time Multi-Channel Monitoring System for Stem Cell Culture Process, IEEE transact. on biomedical cir. and sys., Vol. 2, No. 2(2008), pp.66-77.

DOI: 10.1109/tbcas.2008.925639

Google Scholar

[21] C.F.M. Loureiro, V.M.G. Martins, F.M.C. Clemencio and C.M.B.A. Correia: A fundamental data acquisition saving block, IEEE Nuclear Sci. Sym., Vol. 2(2005), pp.685-686.

DOI: 10.1109/nssmic.2005.1596351

Google Scholar