Photocatalytic Degradation of Organic Dyes Using ZnO/CeO2 Nanocomposite Material under Visible Light

Article Preview

Abstract:

Nanorods of ZnO/CeO2 were synthesized by thermal decomposition method. The decomposition temperature and formation of composite material were confirmed by the thermogravimetric analysis (TGA) before the synthesis process. The prepared samples were characterized by different techniques. The structural and morphological properties of ZnO/CeO2 nanorods were confirmed by X-ray diffraction (XRD) and high resolution scanning electron microscopy (HR-SEM). The chemical composition and specific surface area analysis were done by energy dispersive X-ray spectroscopy (EDX) and Brunauer–Emmett–Teller (BET) method. Further the catalyst was used for photocatalytic degradation of organic dye under visible light irradiation

You might also be interested in these eBooks

Info:

Periodical:

Pages:

381-385

Citation:

Online since:

October 2012

Export:

Price:

[1] H. C. Akyol, M. Yatmaz, Bayramoglu, Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions, Appl. Catal. B: Environ. 54 (2004) 19-24.

DOI: 10.1016/j.apcatb.2004.05.021

Google Scholar

[2] J. Lizama, J. Freer, H.D. Baeza, Mansilla, Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions, Catal. Today. 76 (2002) 235-246.

DOI: 10.1016/s0920-5861(02)00222-5

Google Scholar

[3] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[4] C. Shifu, Z. Wei, Z. Sujuan, L. Wei, Preparation, characterization and photocatalytic activity of N-containing ZnO powder, Chem. Eng. J. 148 (2009) 263-269.

DOI: 10.1016/j.cej.2008.08.039

Google Scholar

[5] K.G. Kanade, et. al. Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation, Mater. Chem. Phys. 102 (2007) 98-104.

DOI: 10.1016/j.matchemphys.2006.11.012

Google Scholar

[6] K.R. Gopidas, M. Bohorquez, P.V. Kamat, Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems, J. Phys. Chem. 94 (1990) 6435-6440.

DOI: 10.1021/j100379a051

Google Scholar

[7] L. Zheng, et. al. Network Structured SnO2/ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity. Inorg. Chem. 48 (2009) 1819-1825.

DOI: 10.1021/ic802293p

Google Scholar

[8] G. Li, et. al.Article Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO−TiO2 Nanocomposites. J. Phys. Chem. C 112(2008) 19040-19044.

DOI: 10.1021/jp8068392

Google Scholar

[9] R. Saravanan, et. al. ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light , Mater. Chem. Phys. 125 (2011) 277-280.

DOI: 10.1016/j.matchemphys.2010.09.030

Google Scholar

[10] R. Georgekutty, M. K. Seery, S. C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties and mechanism, J. Phys. Chem. C. 112 (2008) 13563-13570.

DOI: 10.1021/jp802729a

Google Scholar

[11] X. Yang, Y. Wang, L. Xu, X. Yu, Y. Guo, Silver and indium oxide codoped TiO2 nanocomposites with enhanced photocatalytic activity, J. Phys. Chem. C .112 (2008) 11481-11489.

DOI: 10.1021/jp803559g

Google Scholar

[12] B. G. Mishra, G. Ranga Rao, Promoting effect of ceria on the physicochemical and catalytic properties of CeO2–ZnO composite oxide catalysts, Journal of Molecular Catalysis A: Chemical 243 (2006) 204–213.

DOI: 10.1016/j.molcata.2005.07.048

Google Scholar

[13] M. Faisal, et. al. Role of ZnO-CeO2 Nanostructures as a Photo-catalyst and Chemi-sensor, J. Mater. Sci. Technol., 27(7) (2011) 594-600.

DOI: 10.1016/s1005-0302(11)60113-8

Google Scholar

[14] J.M. Hermann, J. Disdier, P. J. Pichat, Photoassisted platinum deposition on TiO2 powder using various platinum complexes, Phys. Chem. 90 (1986) 6028-6034.

DOI: 10.1021/j100280a114

Google Scholar

[15] A. Sclafani,J. M. Hermann, Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media, J. Photochem. Photobiol. A. 113(1998) 181-188.

DOI: 10.1016/s1010-6030(97)00319-5

Google Scholar