Review on Membrane Technologies for Carbon Dioxide Capture from Power Plant Flue Gas

Article Preview

Abstract:

Membrane technology is a promising alternative to conventional technologies for the mitigation of CO2 from power plant flue gas due to its engineering and economic advantages. In this paper, CO2 post combustion capture by gas separation membranes and gas absorption membranes was extensively summarized and reviewed. In addition, advantages and disadvantages of the technology, current status and future research direction of membrane technology for CO2 capture from power plant flue gas were briefly prospected and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

1140-1144

Citation:

Online since:

December 2012

Export:

Price:

[1] D. deMontigny, P. Tontiwachwuthikul andA. Chakma: Ind. Eng. Chem. Res. Vol. 44 (2005), p.5726.

Google Scholar

[2] C.A. Scholes, S.E. Kentish and G.W. Stevens: Energy Procedia Vol. 1 (2009), p.311.

Google Scholar

[3] R. Bounaceur, N. Lape, D. Roizard, C. Vallieres and E. Favre: Energy Vol. 31 (2006), p.2556.

DOI: 10.1016/j.energy.2005.10.038

Google Scholar

[4] S.A. Stern: J. Membr. Sci. Vol. 94 (1994), p.1.

Google Scholar

[5] G. Illing, K. Hellgardt, R.J. Wakeman and A. Jungbauer: J. Membr. Sci. Vol. 184 (2001), p.69.

Google Scholar

[6] Z. K. Xu, C. Dannenberg, J. Springer, S. Banerjee and G. Maier: J. Membr. Sci. Vol. 205 (2002), p.23.

Google Scholar

[7] M.R. Pixton and D.R. Paul: Macromolec. Vol. 28 (1995), p.8277.

Google Scholar

[8] Y. Li, M. Ding and J. Xu: J. Appl. Polym. Sci. Vol. 63 (1997), p.1.

Google Scholar

[9] M.W. Hellums, W.J. Koros, G.R. Husk and D.R. Paul: J. Membr. Sci. Vol. 46 (1989), p.93.

Google Scholar

[10] H. Lin and B.D. Freeman: J. Membr. Sci. Vol. 239 (2004), p.105.

Google Scholar

[11] C. Hibshman, C.J. Cornelius and E. Marand: J. Membr. Sci. Vol. 211 (2003), p.25.

Google Scholar

[12] F. Hamad, K.C. Khulbe and T. Matsuura: Desalinatn. Vol. 148 (2002), p.369.

Google Scholar

[13] C.M. Zimmerman and W.J. Koros: Macromolec. Vol. 32 (1999), p.3341.

Google Scholar

[14] Y. Dai, M.D. Guiver, G.P. Robertson, Y.S. Kang, K.J. Lee and J.Y. Jho: Macromolec. Vol. 37 (2004), p.1403.

Google Scholar

[15] C.E. Powell and G.G. Qiao: J. Membr. Sci. Vol. 279 (2006), p.1.

Google Scholar

[16] M. Yoshino, K. Ito, H. Kita and K. I. Okamoto: J. Polym. Sci. Part B: Polym. Phys. Vol. 38 (2000), p.1707.

Google Scholar

[17] G. Xomeritakis, C.Y. Tsai, Y.B. Jiang and C.J. Brinker: J. Membr. Sci. Vol. 341 (2009), p.30.

Google Scholar

[18] S.M. Saufi and A.F. Ismail: Carbon Vol. 42 (2004), p.241.

Google Scholar

[19] V. Sebastián, I. Kumakiri, R. Bredesen and M. Menéndez: J. Membr. Sci. Vol. Volume 292 (2007), p.92.

Google Scholar

[20] K. Kusakabe, K. Ichiki, J. Hayashi, H. Maeda and S. Morooka: J. Membr. Sci. Vol. 115 (1996), p.65.

Google Scholar

[21] M. Sadeghi, G. Khanbabaei, A.H.S. Dehaghani, M. Sadeghi, M.A. Aravand, M. Akbarzade and S. Khatti: J. Membr. Sci. Vol. 322 (2008), p.423.

DOI: 10.1016/j.memsci.2008.05.077

Google Scholar

[22] J.E. Bara, C.J. Gabriel, E.S. Hatakeyama, T.K. Carlisle, S. Lessmann, R.D. Noble and D.L. Gin: J. Membr. Sci. Vol. 321 (2008), p.3.

Google Scholar

[23] S. Yuan, Z. Wang, Z. Qiao, M. Wang, J. Wang and S. Wang: J. Membr. Sci. Vol. 378 (2011), p.425.

Google Scholar

[24] A.S. Kovvali and K.K. Sirkar: Ind. Eng. Chem. Res. Vol. 40 (2001), p.2502.

Google Scholar

[25] A. Gabelman and S.T. Hwang: J. Membr. Sci. Vol. 159 (1999), p.61.

Google Scholar

[26] R. Klaassen, P.H. M Feron and A.E. Jansen: Chem. Eng. Res. Des. Vol. 83 (2005), p.234.

Google Scholar

[27] J.L. Li and B.H. Chen: Sep. Purif. Technol. Vol. 41 (2005), p.109.

Google Scholar

[28] Y.X. Lv, X.H. Yu, S.T. Tu, J.Y. Yan and E. Dahlquist: Appl. Energ. Vol. 97 (2012), p.283.

Google Scholar

[29] Y. W Gong, Z. Wang and S.C. Wang: Chem. Eng. Process Vol. 45 (2006), p.652.

Google Scholar

[30] H.H. Park, B.R. Deshwal, I.W. Kim and H.K. Lee: J. Membr. Sci. Vol. 319 (2008), p.29.

Google Scholar

[31] A. Chanachaia, K. Meksup and R. Jiraratananon : Sep. Purif. Technol. Vol. 72 (2010), p.217.

Google Scholar

[32] S. Khaisri, D. deMontigny, P. Tontiwachwuthikul and R. Jiraratananon: Sep. Purif. Technol. Vol. 65 (2009), p.290.

Google Scholar

[33] N. Nishikawa, M. Ishibashi, H. Ohta, N. Akutsu, H. Matsumoto, T. Kamata and H. Kitamura: Energ. Convers. Manage. Vol. 36 (1995), p.415.

Google Scholar

[34] S. Koonaphapdeelert, Z.T. Wu and K. Li: Chem. Eng. Sci. Vol. 64 (2009), p.1.

Google Scholar

[35] Y.X. Lv, X.H. Yu, S.T. Tu, J.Y. Yan and E. Dahlquist: J. Membr. Sci. Vol. 362 (2010), p.444.

Google Scholar

[36] S. Atchariyawut, R. Jiraratananon, R. Wang: J. Membr. Sci. Vol. 304 (2007), p.163.

Google Scholar

[37] Z.K. Xu, J.L. Wang, L.Q. Shen, D.F. Men and Y.Y. Xu: J. Membr. Sci. Vol. 196 (2002), p.221.

Google Scholar

[38] Y.X. Lv, X.H. Yu, J.J. Jia, S.T. Tu, J.Y. Yan and E. Dahlquist: Appl. Energ. Vol. 90 (2012), p.167.

Google Scholar

[39] J.M. Dickson, R.F. Childs, B.E. McCarry and D.R. Gagnon: J. Membr. Sci. Vol. 148 (1998), p.25.

Google Scholar