Dry Drawn Multiwall Carbon Nanotube Sheet as a Counter Electrode for Dye-Sensitized Solar Cells: Multilayer Optimization

Article Preview

Abstract:

We demonstrate the fabrication of dye sensitized solar cells using multiwall carbon nanotube (MWNT) sheets as a counter electrode with catalytic activity optimized by layering as an alternative to platinum deposited on fluorinated tin oxide (FTO). The sheets are drawn directly from a highly aligned forest of MWNTs grown on silicon by chemical vapor deposition. We used different number of MWNT layers on the FTO and pure glass. Cell performance was found to vary with the number of MWNT sheets. When using of 10 or more layers we can substitute the FTO with platinum catalytic particles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

833-837

Citation:

Online since:

December 2012

Export:

Price:

[1] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991), p.737–740.

DOI: 10.1038/353737a0

Google Scholar

[2] M. Grätzel, Photoelectrochemical cells, Nature 414 (2001), p.338–344.

Google Scholar

[3] A. Kay, M. Grätzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Sol Energy Mater Sol Cell 44 (1996), p.99–117.

DOI: 10.1016/0927-0248(96)00063-3

Google Scholar

[4] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, J. Electroanal. Chem. 570 (2004), p.257–263.

DOI: 10.1016/j.jelechem.2004.04.004

Google Scholar

[5] J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang, Q. Meng, A flexible carbon counter electrode for dye-sensitized solar cells, Carbon 47 (2009), p.2704–2708.

DOI: 10.1016/j.carbon.2009.05.028

Google Scholar

[6] P. Joshi, Y. Xie, M. Ropp, D. Galipeau, S. Bailey, Q. Qiao, Dye-sensitized solar cells based on carbon counter electrode, Energy & Environmental Science 2 (2009), pp.426-429.

DOI: 10.1039/b815947p

Google Scholar

[7] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q. Meng, Characterizations of tungsten carbide as a non-Pt counter electrode in dye-sensitized solar cells, Electrochem. Commun. 9 (2007), p.596–598.

DOI: 10.1016/j.elecom.2006.10.028

Google Scholar

[8] M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology, Science, 306 (2004), pp.1358-1361.

DOI: 10.1126/science.1104276

Google Scholar

[9] C.P. Huynh, S.C. Hawkins, M. Redrado, S. Barnes, D. Lau, W. Humphries, G.P. Simon, Evolution of directly-spinnable carbon nanotube growth by recycling analysis, Carbon 49 (2011), pp.1989-97.

DOI: 10.1016/j.carbon.2011.01.024

Google Scholar

[10] C.P. Huynh, S.C. Hawkins, Understanding the synthesis of directly spinnable carbon nanotube forests, Carbon 48 (2010), pp.1105-15.

DOI: 10.1016/j.carbon.2009.11.032

Google Scholar

[11] K. Lui, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties, Nano Lett. 8 (2) (2008), pp.700-5.

DOI: 10.1021/nl0723073

Google Scholar

[12] X. Lepro, M.D. Lima, R.H. Baughman, Spinnable carbon nanotube forests grown on thin, flexible metallic substrates, Carbon 48 (2010), pp.3621-7.

DOI: 10.1016/j.carbon.2010.06.016

Google Scholar

[13] M.F. Yu, M.J. Dyer, Structure and mechanical flexibility of carbon nanotube ribbons: An atomic force microscopy study, Journal of applied physics 89 (2001), pp.4554-4557.

DOI: 10.1063/1.1356437

Google Scholar

[14] C.P. Jones, K. Jurkschat, A. Crossley , C.E. Banks, Multi-Walled Carbon Nanotube Modified Basal Plane Pyrolytic Graphite Electrodes: Exploring Heterogeneity, Electro-catalysis and Highlighting Batch to Batch Variation J. Iran. Chem. Soc., 5 (2008).

DOI: 10.1007/bf03246119

Google Scholar

[15] T.N. Murakami, S. Ito, Q. Wang, M.K. Nazzeruddin, T. Bessho, I. Caser, A flexible carbon counter electrode for dye-sensitized solar cells, J Electrochem Soc 153 (2006), pp. A2255–A2261.

DOI: 10.1149/1.2358087

Google Scholar

[16] W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, Metal nanoparticles and carbon-based nanostructures as advanced materials for cathode application in dye-sensitized solar cells, Applied Materials & Interface 6 (2009), pp.1145-1149.

DOI: 10.1021/am800249k

Google Scholar

[17] B.A. Gregg, Excitonic Solar Cells, J. Phys. Chem. B 107 (2003), p.4688–4698.

Google Scholar

[18] W.J. Lee, E. Ramasamy, D.Y. Lee, Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes, Sol. Energy Mater. Sol. Cells 93 (2009), p.1448–1451.

DOI: 10.1021/am800249k

Google Scholar

[19] K. Aitola, A. Kaskela, J. Halme, V. Ruiz, A.G. Nasibulin, E.I. Kauppinen, P.D. Lunda, lexible transparent single-walled carbon nanotube electrodes: applications in electrochromic windows and dye solar cells, Journal of the Electrochemical Society 157 (2010).

DOI: 10.1149/1.3500367

Google Scholar