Structure – Transport Correlations in Mono-Valent Na+ Doped La1-xNaxMnO3 Manganites

Article Preview

Abstract:

We report the results of the structural, transport and magnetotransport studies on mono-valent doped La1-xNaxMnO3 (LNMO) (x = 0.05, 0.1 and 0.15) manganites. XRD measurement and Rietveld refinement on LNMO samples shows that, all the samples crystallize in distorted rhombohedral structure without any additional impurity peaks. The d.c. four probe resistivity measurements show that, the metal-insulator transition temperature (TP) exhibited by the Na doped manganites increases and resistivity decreases with increasing x. This behavior has been explained on the basis of size disorder effect, tolerance factor variation and structural modifications due to large size mono-valent Na-doping. In the metallic region, the resistivity data have been fitted to the zener double exchange (ZDE) polynomial law for all the three samples. Magnetoresistance (MR) studies show a decrease in low temperature (5K) MR while increase in room temperature MR with increase in Na-content in the LNMO manganites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-7

Citation:

Online since:

February 2013

Export:

Price:

[1] R. Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).

Google Scholar

[2] S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh and L.H. Chen, Science 264, 413 (1994).

Google Scholar

[3] J.M.D. Coey, M. Viret and S. Von Molnar, Adv. Phys. 48, 167 (1998).

Google Scholar

[4] M.B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

Google Scholar

[5] E. Dagotto, T. Hotta and A. Moreo, Phys. Rep. 344, 1 (2001).

Google Scholar

[6] J.B. Goodenough, Rep. Prog. Phys. 67, 1915 (2004).

Google Scholar

[7] C. Zener, Phys. Rev. 82, 403 (1951).

Google Scholar

[8] P.W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).

Google Scholar

[9] P.G. de Gennes, Phys. Rev. 118, 141 (1960).

Google Scholar

[10] K. Kuba and N. Ohata, J. Phys. Soc. Japan 33, 21 (1972).

Google Scholar

[11] P. Dai, J. Zhang, H.A. Mook, S.H. Liou, P.A. Dowber and E.W. Plummer, Phys. Rev. B 54, R3694 (1996).

Google Scholar

[12] P.W. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.W. Cheong, J.D. Jorgensen and D.H. Argyrion, Phys. Rev. B 56, 8265 (1997).

Google Scholar

[13] A.J. Millis, P.B. Littlewood and B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).

Google Scholar

[14] J. Fontcuberta, B. Martinez, A. Seffar, S. Pinol, J.L. Garcia-Munoz and X. Obradors, Phys. Rev. Lett. 76, 1122 (1996).

Google Scholar

[15] D.S. Rana, K.R. Mavani, C.M. Thaker, D.G. Kuberkar, D.C. Kundaliya and S.K. Malik, J. Appl. Phys. 95, 7097 (2004).

Google Scholar

[16] D.S. Rana, C.M. Thaker, K.R. Mavani, D.G. Kuberkar, D.C. Kundaliya and S.K. Malik, J. Appl. Phys. 95, 4934 (2004).

Google Scholar

[17] D.S. Rana, D.G. Kuberkar, M.B. Stone, P. Schiffer and S.K. Malik, J. Appl. Phys. 97, 10H710 (2005).

Google Scholar

[18] S.L. Ye, W.H. Song, J.M. Dai, K.Y. Wang, S.G. Wang, J.J. Du, Y.P. Sun, J. Fang, L.J. Chen and B.J. Gao, J. Appl. Phys. 90, 2943 (2001).

Google Scholar

[19] S. Roy, Y.Q. Guo, S. Venkatesh and N. Ali, J. Phys.: Condens. Matter 13, 9547 (2001).

Google Scholar

[20] M. Sahana, R.N. Singh, C. Shivakumara, N.Y. Vasanthacharya, M.S. Hegde, S. Subramanian, V. Prasad and S.V. Subramanyam, Appl. Phys. Lett. 70, 2909 (1997).

DOI: 10.1063/1.119050

Google Scholar

[21] L. Malavasi, M.C. Mozzati, S. Polizzi, C.B. Azzoni and G. Flor, Chem. Mater. 15, 5036 (2003).

Google Scholar