A Review on Biosynthesis of Nanoparticles Using Plant Extract: An Emerging Green Nanotechnology

Article Preview

Abstract:

The development of reliable and eco-friendly metallic nanoparticles needs some consideration on the chemical procedures involved in the synthesis of nanomaterials. The conventional methods in the production of metallic nanoparticles generate a large amount of hazardous byproducts. Thus, there is a need for ‘green chemistry’ that includes a clean, nontoxic and environment-friendly method of nanoparticle synthesis [1]. As an alternative, biological methods are considered safe and ecologically sound for the nanomaterial fabrication [2]. Therefore, in this review special attention is focused on the biosynthesis of nanoparticles from natural resources as compared as ordinary chemical method. Biosynthesis of nanoparticles using plant is a new development of green nanotechnology beneficial to environmental and to the plant itself. It also plays a significant role in the field of biology and medicine.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-254

Citation:

Online since:

March 2013

Export:

Price:

[1] P. Mukherjee. A. Ahmad, D. Mandal, S. Senapati, SR. Sainkar, MI Khan, R. Parishcha, PV. Ajaykumar, M. Alam, R. Kumar, M. Sastry, Nano Lett (2001) 515–519.

DOI: 10.1021/nl0155274

Google Scholar

[2] S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Nature Materials 3 (2004) 482–488.

DOI: 10.1038/nmat1152

Google Scholar

[3] http: /www. nanowerk. com/spotlight/ (Feb 2011).

Google Scholar

[4] http: /www. ostp. gov/NSTC/html (Feb 2011).

Google Scholar

[5] W. Jahn, J. Struct. Biol. 127 (1999) 106.

Google Scholar

[6] H. S. Naiwa, Ed. HandBook of Nanostructural Materials and Nanotechnology Academic Press New York (2000) 1-5.

Google Scholar

[7] C. J. Murphy, J. Mater Chem. 18 (2008) 2173–2176.

Google Scholar

[8] S. Schultz, D. R. Smith, J. J. Mock, D. A. Schultz, PNAS 97 (2000) 996-1001.

Google Scholar

[9] M. Rai, A Yadav, A Gade, Biotechnol. Advances 27 (2009) 76–83.

Google Scholar

[10] J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-Bragado, X. Gao, H H Lara, M J. Yacaman, J. Nanobiotechnol. 3 (2005) 6.

DOI: 10.1186/1477-3155-3-6

Google Scholar

[11] R. M. Crooks, B. I. Lemon, L. Sun, L. K. Yeung, M. Zhao, Top. Curr. Chem. 212 (2001) 82-135.

Google Scholar

[12] D. I. Gittins, D. Bethell, R. J. Nichols, D. J. Schiffrin, J Mater Chem 10 (2000) 79–83.

Google Scholar

[13] C.S. Nilesh, V.S. Shivendra, N. Sudip, G.P. Jason, L.G. Jorge, P. Tarasankar, Environ Sci Technol. 41 (2007) 5137-514.

Google Scholar

[14] L. Arangasamy & V. Munusamy, African Journal of Biotechnology 7 (2008) 3162-3165.

Google Scholar

[15] K. Kavita, C. Nripen, S. Ravi, Z. Ajit, S. Thilakavathi, R.K. Rajesh, K. Raghuraman, V.K. Kattesh, Int. J Green Nanotechnology Biomed. (2009).

Google Scholar

[16] D. Jain, H. K. Daima, S. Kachhwaha, S.L. Khotari, Digest Jpurnal of Nanomaterials and Biostructures 4 (2009) 557-563.

Google Scholar

[17] A. Subramanian, S. Muthukumaran, Int. J. Res. Pharm. Sci. 1 (2010) 417-420.

Google Scholar

[18] S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, App Nano Sci. 1 (2004) 69–77.

Google Scholar

[19] R.G. Powell, C.R. Smith, Journal of Nat. Prod. 44 (1981) 86–90.

Google Scholar

[20] I.A. Siddiqui, V.M. Adhami, D.J. Bharali, B.B. Hafeez, M. Asim, S.I. Khwaja, N. Ahmad, H. Cui, S.A. Mousa, H. Mukhtar, Cancer Res. 69 (2009) 1712–6.

DOI: 10.1158/0008-5472.can-08-3978

Google Scholar

[21] A. Matthew, C.W. Albrecht, Green Chem. 8 (2006) 417–432.

Google Scholar

[22] K.L.S. Roy, Green Chem. 8 (2006) 1063–1066.

Google Scholar

[23] J.E. Hutchison, ACS Nano 2 (2008), 395–402.

Google Scholar

[24] V.K. Sharma, R.A. Yngard, Y. Lin. Adv Colloid Interface Sci. 145 (2009) 83–96.

Google Scholar

[25] N. Vigneshwaran, R.P. Nachane, R.H. Balasubramanya, P.V. Varadarajan, Carbohydr Res. 341 (2006) 2012–8.

Google Scholar

[26] D.V. Goia, E. Matijevic, N. J. Chem. 22 (1998) 1203.

Google Scholar

[27] C. Taleb, M. Petit, P. Pileni, Chem. Mater. 9 (1997) 950.

Google Scholar

[28] K. Esumi, T. Tano, K. Torigoe, K. Meguro, Chem. Mater. 2 (1990) 564.

Google Scholar

[29] A. Henglein, Langmuir 17 (2001) 2329.

Google Scholar

[30] L. Rodriguez-Sanchez, M. C. Blanco, M. A. Lopez-Quintela, J. Phys. Chem. B 104 (2000) 9683.

Google Scholar

[31] J. J. Zhu, S. W. Liu, O. Palchik, Y. Koltypin, A. Gedanken Langmuir 16 (2000) 6396.

Google Scholar

[32] Pastoriza-Santos, L. M. Liz-Marzan, Langmuir 18 (2002) 2888.

Google Scholar

[33] K. Esumi, K.A. Suzuki, K. Torigoe, Colloids and Surfaces, A: Physicochemical and Engineering Aspects. 189 (2001) 155–61.

Google Scholar

[34] A.G.J. Feitz, D. Waite, CRC for Waste Management & Pollution Control Limited; Australia (2004) 36.

Google Scholar

[35] J. Young-Ki, H. K Byung, J. Geunhwa, Plant Disease 93 (2009) 1037-1043.

Google Scholar

[36] V. Parashar, R. Parashar, B. Sharma, A. C. Pandey, Digest Journal of Nanomaterials and Biostructures 4 (2009), 45 – 50.

Google Scholar

[37] N. Saifuddin, C. W. Wong, A. A. N. Yasumira, E-Journal of Chemistry 6 (2009) 61-70.

Google Scholar

[38] K. C. Bhainsa, S. F. D'Souza, Colloids and Surfaces B: Biointerfaces 47 (2006) 160–164.

Google Scholar

[39] B. Willner, B. Basnar, B. Willner FEBS J 274 (2007) 302–309.

Google Scholar

[40] Ahmad, S. Senapati, M. I. Khan, R. Kumar, R. Ramani, V. Srivinas, M. Sastry, Nanotechnol. 14 (2003) 824.

Google Scholar