A Molecular Dynamics Study of the Cyanobacterial Clock Protein KaiA

Article Preview

Abstract:

Regulation of daily physiological functions with a ~24-hour periodicity, or circadian rhythms, exists in both eukaryotes and prokaryotes. So far, cyanobacteria are only known prokaryotes proved to have circadian rhythmicity. The circadian system in cyanobacteria comprises a post-translational oscillator (PTO) and a transcriptional/translational feedback loop (TTFL). The PTO comprise of three proteins (KaiA, KaiB, KaiC), and can be reconstituted in vitro with the existence of ATP. Phase of the PTO is associated with the phosphorylation states of KaiC, with KaiA promoting the phosphorylation of KaiC, and KaiB promoting the de-phosphorylation. Here we studied the dynamics of the KaiA protein of Thermosynechococcus elongatus. The result will be helpful in understanding the function of KaiA and its binding with KaiC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

338-343

Citation:

Online since:

August 2013

Authors:

Export:

Price:

[1] D. Feng and M. A. Lazar, Clocks, metabolism, and the epigenome., Molecular Cell, vol. 47, no. 2, p.158–167, Jul. (2012).

DOI: 10.1016/j.molcel.2012.06.026

Google Scholar

[2] C. H. Johnson, P. L. Stewart, and M. Egli, The Cyanobacterial Circadian System: From Biophysics to Bioevolution, Annu. Rev. Biophys., vol. 40, no. 1, p.143–167, Jun. (2011).

DOI: 10.1146/annurev-biophys-042910-155317

Google Scholar

[3] C. H. Johnson, Circadian clocks and cell division: What's the pacemaker?, Cell Cycle, vol. 9, no. 19, p.3864–3873, Oct. (2010).

DOI: 10.4161/cc.9.19.13205

Google Scholar

[4] J. Morf and U. Schibler, Circadian Cell-Cycle Progression: Cracking Open the Gate, Cell, vol. 140, no. 4, p.458–459, Feb. (2010).

DOI: 10.1016/j.cell.2010.02.002

Google Scholar

[5] Y. -I. Kim, D. J. Vinyard, G. M. Ananyev, G. C. Dismukes, and S. S. Golden, Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator., Proceedings of the National Academy of Sciences, vol. 109, no. 44, p.17765–17769, Oct. (2012).

DOI: 10.1073/pnas.1216401109

Google Scholar

[6] M. D. C. Belle and H. D. Piggins, Physiology. Circadian time redoxed., Science, vol. 337, no. 6096, p.805–806, Aug. (2012).

DOI: 10.1126/science.1227203

Google Scholar

[7] B. R. Crane, Biochemistry. Nature's intricate clockwork., Science, vol. 337, no. 6091, p.165–166, Jul. (2012).

DOI: 10.1126/science.1224611

Google Scholar

[8] R. G. Foster, Biological Clocks: Who in This Place Set Up a Sundial?, Current Biology, vol. 22, no. 10, pp. R405–R407, May (2012).

DOI: 10.1016/j.cub.2012.04.031

Google Scholar

[9] R. S. Edgar, E. W. Green, Y. Zhao, G. van Ooijen, M. Olmedo, X. Qin, Y. Xu, M. Pan, U. K. Valekunja, K. A. Feeney, E. S. Maywood, M. H. Hastings, N. S. Baliga, M. Merrow, A. J. Millar, C. H. Johnson, C. P. Kyriacou, J. S. O'Neill, and A. B. Reddy, Peroxiredoxins are conserved markers of circadian rhythms, Nature, vol. 485, no. 7399, p.459–464, May (2012).

DOI: 10.1038/nature11088

Google Scholar

[10] J. Bass and J. S. Takahashi, Circadian rhythms: Redox redux., Nature, vol. 469, no. 7331, p.476–478, Jan. (2011).

DOI: 10.1038/469476a

Google Scholar

[11] J. S. O'Neill and A. B. Reddy, Circadian clocks in human red blood cells, Nature, vol. 469, no. 7331, p.498–503, Jan. (2011).

DOI: 10.1038/nature09702

Google Scholar

[12] J. S. O'Neill, G. van Ooijen, L. E. Dixon, C. Troein, F. Corellou, F. -Y. Bouget, A. B. Reddy, and A. J. Millar, Circadian rhythms persist without transcription in a eukaryote, Nature, vol. 469, no. 7331, p.554–558, Jan. (2011).

DOI: 10.1038/nature09654

Google Scholar

[13] S. Akiyama, Structural and dynamic aspects of protein clocks: how can they be so slow and stable?, Cell. Mol. Life Sci., vol. 69, no. 13, p.2147–2160, Jul. (2012).

DOI: 10.1007/s00018-012-0919-3

Google Scholar

[14] G. Dong, Y. -I. Kim, and S. S. Golden, Simplicity and complexity in the cyanobacterial circadian clock mechanism, Current Opinion in Genetics & Development, vol. 20, no. 6, p.619–625, Dec. (2010).

DOI: 10.1016/j.gde.2010.09.002

Google Scholar

[15] M. Loza-Correa, L. Gomez-Valero, and C. Buchrieser, Circadian clock proteins in prokaryotes: hidden rhythms?, Front Microbiol, vol. 1, p.130, (2010).

DOI: 10.3389/fmicb.2010.00130

Google Scholar

[16] G. Dong and S. S. Golden, How a cyanobacterium tells time, Current Opinion in Microbiology, vol. 11, no. 6, p.541–546, Dec. (2008).

DOI: 10.1016/j.mib.2008.10.003

Google Scholar

[17] C. H. Johnson, T. Mori, and Y. Xu, A Cyanobacterial Circadian Clockwork, Current Biology, vol. 18, no. 17, pp. R816–R825, Sep. (2008).

DOI: 10.1016/j.cub.2008.07.012

Google Scholar

[18] L. D. Wilsbacher and J. S. Takahashi, Circadian rhythms: molecular basis of the clock., Current Opinion in Genetics & Development, vol. 8, no. 5, p.595–602, Oct. (1998).

DOI: 10.1016/s0959-437x(98)80017-8

Google Scholar

[19] M. Ishiura, S. Kutsuna, S. Aoki, H. Iwasaki, C. R. Andersson, A. Tanabe, S. S. Golden, C. H. Johnson, and T. Kondo, Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria., Science, vol. 281, no. 5382, p.1519–1523, Sep. (1998).

DOI: 10.1126/science.281.5382.1519

Google Scholar

[20] R. L. Bradley and K. J. Reddy, Cloning, sequencing, and regulation of the global nitrogen regulator gene ntcA in the unicellular diazotrophic cyanobacterium Cyanothece sp. strain BH68K., Journal of Bacteriology, vol. 179, no. 13, p.4407–4410, Jul. (1997).

DOI: 10.1128/jb.179.13.4407-4410.1997

Google Scholar

[21] Y. Liu, N. F. Tsinoremas, C. H. Johnson, N. V. Lebedeva, S. S. Golden, M. Ishiura, and T. Kondo, Circadian orchestration of gene expression in cyanobacteria., Genes & Development, vol. 9, no. 12, p.1469–1478, Jun. (1995).

DOI: 10.1101/gad.9.12.1469

Google Scholar

[22] E. Emberly and N. S. Wingreen, Hourglass model for a protein-based circadian oscillator., Phys. Rev. Lett., vol. 96, no. 3, p.038303, Jan. (2006).

DOI: 10.1103/physrevlett.96.038303

Google Scholar

[23] F. Naef, Circadian clocks go in vitro: purely post-translational oscillators in cyanobacteria, Molecular Systems Biology, vol. 1, no. 1, pp. E1–E5, Sep. (2005).

DOI: 10.1038/msb4100027

Google Scholar

[24] M. Nakajima, K. Imai, H. Ito, T. Nishiwaki, Y. Murayama, H. Iwasaki, T. Oyama, and T. Kondo, Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro., Science, vol. 308, no. 5720, p.414–415, Apr. (2005).

DOI: 10.1126/science.1108451

Google Scholar

[25] J. Tomita, M. Nakajima, T. Kondo, and H. Iwasaki, No transcription-translation feedback in circadian rhythm of KaiC phosphorylation., Science, vol. 307, no. 5707, p.251–254, Jan. (2005).

DOI: 10.1126/science.1102540

Google Scholar

[26] Y. Murayama, A. Mukaiyama, K. Imai, Y. Onoue, A. Tsunoda, A. Nohara, T. Ishida, Y. Maéda, K. Terauchi, T. Kondo, and S. Akiyama, Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution., The EMBO Journal, vol. 30, no. 1, p.68–78, Jan. (2011).

DOI: 10.1038/emboj.2010.298

Google Scholar

[27] Y. I. Kim, G. Dong, C. W. Carruthers, S. S. Golden, and A. LiWang, The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria, Proc. Natl. Acad. Sci. U.S.A., vol. 105, no. 35, p.12825–12830, Sep. (2008).

DOI: 10.1073/pnas.0800526105

Google Scholar

[28] C. R. McClung, The cyanobacterial circadian clock is based on the intrinsic ATPase activity of KaiC., Proc. Natl. Acad. Sci. U.S.A., vol. 104, no. 43, p.16727–16728, Oct. (2007).

DOI: 10.1073/pnas.0708757104

Google Scholar

[29] T. Kondo, A Cyanobacterial Circadian Clock Based on the Kai Oscillator, Cold Spring Harbor Symposia on Quantitative Biology, vol. 72, no. 1, p.47–55, Jan. (2007).

DOI: 10.1101/sqb.2007.72.029

Google Scholar

[30] A. Mehra, C. I. Hong, M. Shi, J. J. Loros, J. C. Dunlap, and P. Ruoff, Circadian rhythmicity by autocatalysis., PLoS Comput Biol, vol. 2, no. 7, p. e96, Jul. (2006).

DOI: 10.1371/journal.pcbi.0020096

Google Scholar

[31] H. KAGEYAMA, T. Nishiwaki, M. NAKAJIMA, H. Iwasaki, T. Oyama, and T. Kondo, Cyanobacterial Circadian Pacemaker: Kai Protein Complex Dynamics in the KaiC Phosphorylation Cycle In Vitro, Molecular Cell, vol. 23, no. 2, p.161–171, Jul. (2006).

DOI: 10.1016/j.molcel.2006.05.039

Google Scholar

[32] R. Pattanayek, D. R. Williams, S. Pattanayek, Y. Xu, T. Mori, C. H. Johnson, P. L. Stewart, and M. Egli, Analysis of KaiA-KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods., The EMBO Journal, vol. 25, no. 9, p.2017–2028, May (2006).

DOI: 10.1038/sj.emboj.7601086

Google Scholar

[33] I. Vakonakis and A. C. LiWang, Structure of the C-terminal domain of the clock protein KaiA in complex with a KaiC-derived peptide: implications for KaiC regulation., Proc. Natl. Acad. Sci. U.S.A., vol. 101, no. 30, p.10925–10930, Jul. (2004).

DOI: 10.1073/pnas.0403037101

Google Scholar

[34] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, Scalable molecular dynamics with NAMD., J. Comput. Chem., vol. 26, no. 16, p.1781–1802, Dec. (2005).

DOI: 10.1002/jcc.20289

Google Scholar

[35] W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics., J Mol Graph, vol. 14, no. 1, p.33–8– 27–8, Feb. (1996).

DOI: 10.1016/0263-7855(96)00018-5

Google Scholar