Recent Advances in Study of Ginsenoside Biosynthetic Pathway in Panax ginseng

Article Preview

Abstract:

Ginsenosides, the major bioactive ingredients of P. ginseng can improve the anti-disease abilities of human being, and generate significant social and economic benefits. However, along with gradually or rapidly or dramatically increasing demand of the ginsenosides, extensive studies have focused on regulating the ginsenoside biosynthetic pathway on a genetic level. This review provides the latest research progress on biosynthetic pathway of ginsenosides, including the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathway, which is newly discovered and located in P. ginseng. Moreover, it also indicated lanosterol synthase metabolic flux present in P. ginseng.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

368-373

Citation:

Online since:

September 2013

Export:

Price:

[1] Shibata S: Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. The Korean Academy of Medical Sciences. 16: S28-37. (2001).

DOI: 10.3346/jkms.2001.16.s.s28

Google Scholar

[2] Li W, Liu Y, Zhang J W, Ai C Z, et al: Anti-androgen-independent prostate cancer effects of ginsenoside metabolites In Vitro: Mechanism and possible structure-activity relationship investigation. Archives of Pharmacal Research. 32(1): 49-57. (2009).

DOI: 10.1007/s12272-009-1117-1

Google Scholar

[3] Attele A S, Zhou Y P, Xie J T, Wu J A, Zhang L, et al.: Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes. 51(6): 1851-8. (2002).

DOI: 10.2337/diabetes.51.6.1851

Google Scholar

[4] Lim S, Cho C W, Choi U K, Kim Y C: Antioxidant activity and ginsenoside pattern of fermented white ginseng. Journal of Ginseng Research. 34(3): 168-174. (2010).

DOI: 10.5142/jgr.2010.34.3.168

Google Scholar

[5] Park J, Cho J Y: Anti-inflammatory effects of ginsenosides from Panax ginseng and their structural analogs. African Journal of Biotechnology. 8 (16): 3682-3690. (2009).

Google Scholar

[6] Pan S Y, Liu D Y, Zhong S Z, et al: The effect of 9 Kind of Ginsenosides on cultured spinal neurons from embryonic rat. Journal of Brain and Nervous Diseases. 8(6): 331-333. (2000).

Google Scholar

[7] Chen, S., Luo, H., Li, Y., Sun, Y., Wu, Qi., Niu, Y: 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Rep, 30, 1593–1601. (2011).

DOI: 10.1007/s00299-011-1070-6

Google Scholar

[8] Okazaki H, Tazoe F, Okazaki S, Isoo N, Tsukamoto K, et al.: Increased cholesterol biosynthesis and hypercholesterolemia in mice overexpressing squalene synthase in the liver. Journal of Lipid Research. 47: 1950–1958. (2006).

DOI: 10.1194/jlr.m600224-jlr200

Google Scholar

[9] Vogler B K, Pittler M H, Ernst E: The efficacy of ginseng. A systematic review of randomized clinical trials. European Journal of Clinical Pharmacology. 55: 567-575. (1999).

DOI: 10.1007/s002280050674

Google Scholar

[10] Helms S: Cancer prevention and therapeutics: Panax ginseng. Alternative Medicine Review. 9: 259–274. (2004).

Google Scholar

[11] Kim M K, Lee B S, In J G, Sun H, Yoon J H, Yang D C: Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf. Plant Cell Reports. 25: 599–606. (2006).

DOI: 10.1007/s00299-005-0095-0

Google Scholar

[12] Lichtenthaler H K, Schwender J, Disch, A, RohmerM: Biosynthesis of isoprenoids in higher plants proceeds via amevalonate independent pathway. FEBS Letters. 400: 271–274. (1997).

DOI: 10.1016/s0014-5793(96)01404-4

Google Scholar

[13] Hecht S, Eisenreich W, Adam P, Amslinger S, et al.: Studies on thenonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proceedings of the National Academy of Sciences. 98: 14837–14842. (2001).

DOI: 10.1073/pnas.201399298

Google Scholar

[14] Li Liu: Research on MVA and MEP pathways of ginsenoside biosynthesis by utilizing inhibitors[D]. Jilin University. (2012).

Google Scholar

[15] Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C: Is the reaction catalysed by 3-hydroxy-3-m ethylglutaryl coenzyme A reductase a rate limiting step for isoprenoid biosynthesis in plants?. Plant Physiology. T09: 1337-1343. (1995).

DOI: 10.1104/pp.109.4.1337

Google Scholar

[16] Seemann M, Bui B T S, Wolff M, et al: Isoprenoid bioynthesis in plant chloroplasts via the MEP pathway: Direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG. Federation of European Biochemical Societies. 580(6): 1547-1552. (2006).

DOI: 10.1016/j.febslet.2006.01.082

Google Scholar

[17] Lewis M J, Pros serI M , Mohib A, et al: Cloning and characterisation of a prenyltransferase from the aphid myzus persicae with potential involvement in alarm pheromone biosynthesis. Insect Molecular Biology. 17(4): 437-443. (2008).

DOI: 10.1111/j.1365-2583.2008.00815.x

Google Scholar

[18] Xu R, Fazio G C, Matsuda S P T: On the origins of triterpenoid skeletal diversity. Phytochemistry. 65: 261–291. (2004).

DOI: 10.1016/j.phytochem.2003.11.014

Google Scholar

[19] Kushiro T, Ohno Y, Shibuya M, Ebizuka Y: Invitro conversion of 2, 3-oxidosqualece into dammarenediol by Panax ginseng microsomes. Biological & Pharmaceutical Bulletin. 20(3): 292-294. (1997).

DOI: 10.1248/bpb.20.292

Google Scholar

[20] Shibuya M, Hoshino M, Katsube Y, Hayashi H, Kushiro T, Ebizuka Y: Identification of β-Amyrin and sophoradiol 24-hydroxylase by EST mining and functional expression assay. FEBS Journal. 273(5): 948-959. (2006).

DOI: 10.1111/j.1742-4658.2006.05120.x

Google Scholar

[21] Choi D W, Jung J, Ha Y I, et al.: Analysis of t ranscript s in methyl jasmonate treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Reports. 23( 8) : 557-566. (2005).

DOI: 10.1007/s00299-004-0845-4

Google Scholar

[22] Kushiro T, Shibuya M, Ebizuka Y: β-amyrin synthase-cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. European Journal of Biochemistry. 256(1): 238–244. (1998).

DOI: 10.1046/j.1432-1327.1998.2560238.x

Google Scholar

[23] Morita M, Shibuya M, Lee M S, Sankawa U, Ebizuka Y: Molecular cloning of pea cDNA encoding cycloartenol synthase and its functional expression in yeast. Biological & Pharmaceutical Bulletin. 20: 770-775. (1997).

DOI: 10.1248/bpb.20.770

Google Scholar

[24] Phillips D R, Rasbery J M, Bartel B, Matsuda S P T: Biosynthetic diversity in plant triterpene cyclization. Current Opinion in plant Biology. 9: 305–314. (2006).

DOI: 10.1016/j.pbi.2006.03.004

Google Scholar

[25] Suzuki M, Xiang T, Ohyama K, Seki H, et al.: Lanosterol synthase in dicotyledonous plants. Plant Cell Physiol. 47(5): 565-571. (2006).

DOI: 10.1093/pcp/pcj031

Google Scholar

[26] Liang Y L, Zhao S J: Progress in understanding of ginsenoside biosynthesis. Plant Biology. 10(4): 415-421. (2008).

DOI: 10.1111/j.1438-8677.2008.00064.x

Google Scholar

[27] Paseshnichenko V A: A new alternative non-mevalonate pathway of isoprenoid biosynthesis in eubacteria and plants. Biochemistry (Moscow). 63: 171-182. (1998).

Google Scholar