Detailed Analysis of Shallow and Heavily-Doped Emitters for Al-BSF Bifacial Solar Cells

Article Preview

Abstract:

A selective emitter structure is a promising approach to improve the cell efficiency of industrial type silicon solar cells by minimizing the losses at the front surface and in the emitter. Selective emitters can be produced by numerous processing sequences, resulting in different doping profiles. This paper focuses on the analysis of emitter formation for bifacial solar cell application. In this research, liquid phosphorus oxy-trichloride (POCl3) has been used as a diffusion source for emitter formation. The diffusion temperature was varied from 800 to 900 °C in order to determine an optimum diffusion profile. In this study, the mask-free diffusion process forms diffused emitter on both side of Si wafer. In order to determine the emitter characteristics, the sheet resistance of Si wafer after POCl3 diffusion process was measured using a four-point probe. Based on the sheet resistance value of ~47 ohm/sq, the emitter has been classified as heavily-doped emitter. The performance analysis using surface photovoltage (SPV) and spectral response presents a diffusion length of 2.19 μm. The POCl3-diffusion and screen printed Al-BSF led to bifacial solar cells with a front surface efficiency of 12.8 % and back surface efficiency of 5.08 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

459-463

Citation:

Online since:

February 2014

Export:

Price:

* - Corresponding Author

[1] C. Vázquez, J. Alonso, M.A. Vázquez, L.J. Caballero, R. Romero, and J.R. Ramos-Barrado, Efficiency of commercial Cz-Si solar cell with a shallow emitter. Materials Science and Engineering B, 172 (2010) 43–49.

DOI: 10.1016/j.mseb.2010.04.015

Google Scholar

[2] A. Moehlecke, I. Zanesco, and A. Luque, Practical High Efficiency Bifacial Solar Cell, Proceedings of WCREC, Hawaii, 1994, pp.1663-1666.

Google Scholar

[3] H. Ohtsuka, M. Sakamoto, M. Koyama, S. Muramatsu, Y. Yazawa, T. Warabisako, T. Abe, T. Saitoh, Effect of light degradation on bifacial Si solar cell, Sol. Energy Mat. Solar Cells, 66 (2001) 51-59.

DOI: 10.1016/s0927-0248(00)00158-6

Google Scholar

[4] B. Lenkeit, S. Steckemetz, F. Artuso, and R. Hezel, Excellent thermal stability of remote plasma-enhanced chemical vapour deposited silicon nitride films for the rear of screen printed bifacial silicon solar cells, Sol. Energy Mat. Solar Cells, 65 (2001).

DOI: 10.1016/s0927-0248(00)00108-2

Google Scholar

[5] C. Voz, D. Munoz, M. Fonrodona, I. Martin, J. Puidollers, R. Alcubilla, J. Escarre, J. Bortemou, and J. Andreu, Bifacial heterounction silicon solar cells by hot-wire CVD with open-circuit voltages exceeding 600 mV, Thin Solid Films, 511-512 (2006).

DOI: 10.1016/j.tsf.2005.11.099

Google Scholar

[6] H. Kerp, S. Kim, R. Lago, F. Recart, I. Freire, L. Perez, K. Albertsen, J. C Jimeno and A. Shaikh, Development of screenprintable contacts for p+ emitters in bifacial solar cell, 21st EU PSEC, Dresden, 2003, pp.892-894.

Google Scholar

[7] V.D. Mihailetchi, L.J. Geerligs, Y. Komatsu, T. Buck, I. Rover, K. Wambach, C. Knopf, and R. Kopecek, High efficiency industrial screen printed n-type mc-Si with front boron emitter, 33rd IEEE Photovoltaic Specialist Conference, 1-2 (2007) 1-5.

DOI: 10.1109/pvsc.2008.4922846

Google Scholar

[8] J. Y Lee, Boron Back Surface Field Using spin on dopants by rapid thermal processing, Journal of Korean Physical Society, 44-6 (2004) 1581-1586.

Google Scholar

[9] J. Arumughan, R. Kopecek, T. Pernau, T. Buck, P. Fath, and K. Peter, Realization of thin mc-Si PERT-type bifacial solar cells in industrial environments, Conference Record of the 2006 IEEE 4th World Conf. on PVEC, Hawaii, 2006, pp.1103-1106.

DOI: 10.1109/wcpec.2006.279353

Google Scholar

[10] A. Kranzel, R. Kopecek, B. Terheiden, and P. Fath, Bifacial solar cells on multi-crystalline silicon, 15th International Photovoltaic Science and Engineering Conference (PVSEC-15), Shanghai, 2005, pp.885-886.

Google Scholar

[11] V. Vijay, K. Nakayashiki, M. Hilali, and A. Rohatgi, Implementation of a homogenous high sheet resistance emitter in multicrystalline silicon solar cells. 31st IEEE Photovoltaic Specialist Conference, 2005, pp.959-962.

DOI: 10.1109/pvsc.2005.1488291

Google Scholar

[12] M. A Green, M.J. Keevers, Optical properties of intrinsic silicon at 300 K. Progress in Photovoltaics 3 (1995) 189.

Google Scholar