A Parallel Connection-Simulation Paradigm of Intelligent Robot - Based on Integrated Control of Language, Music and Motion Rhythm by Human Brain

Article Preview

Abstract:

In light of the integrated control of language, music and motion rhythm by human brain, the paper proposes a preliminary scheme to overcome a long-standing obstacle in the design paradigm of contemporary intelligent robot, i.e., by employing a set of simulated rhythm sensing systems and without changing the hard drive capacity, it offers a solution to the contradiction between synchronization of perception, planning and execution and excessive calculation task, thus fulfilling the long dream of "bottleneck breaking through"

You might also be interested in these eBooks

Info:

Periodical:

Pages:

312-317

Citation:

Online since:

February 2014

Export:

Price:

* - Corresponding Author

[1] Robin R Murphy. Introduction to artificial intelligence robot,Translated by Du Junping et al, Electronic Industry Press, (2004 ).

Google Scholar

[2] Ben Kerong, Artificial intelligence , Tsinghua University Press, (2013).

Google Scholar

[3] R. Nourbakhsh et al. Introduction to autonomous mobile robots, Li Renhou Translated by Xi'an Traffic university Press, (2006).

Google Scholar

[4] Shen Jiaxuan, Connectionism in AI and Grammatical Theories, Journal of Foreign Languages, (3)2-10, (2004).

Google Scholar

[5] M. Lieberman & A. Prince. On stress and linguistic rhythm, In Linguistic Inquiry, 8: 249-336. (1977).

Google Scholar

[6] Grahn, J. A., & Brett, M. Rhythm and beat perception in motor areas of the brain. Journal of Neuroscience, 19, 893-906. (2007).

DOI: 10.1162/jocn.2007.19.5.893

Google Scholar

[7] Grahn, J. A., & Rowe, J. B. Feeling the beat premotor and striatal interactions in musicians and nonmusicians during beat perception. Journal of Neuroscience, 29, 7540-7548. (2009).

DOI: 10.1523/jneurosci.2018-08.2009

Google Scholar

[8] Martin, X. P., Deltenre, P., Hoonhorst, I., Markessis, E., Rossion, B. & Colin, C. Perceptual biases for rhythm: The Mismatch Negativity latency indexes the privileged status of binary Vs non binary interval ratios. Clinical Neurophysiology. 118, 2709-2715. (2007).

DOI: 10.1016/j.clinph.2007.08.019

Google Scholar

[9] Jongsma, L. A., Desain, P., & Honing, H. Rhythmic context influences the auditory evoked potentials of musicians and nonmusicians. Biological psychology, 66, 129-152. (2004).

DOI: 10.1016/j.biopsycho.2003.10.002

Google Scholar

[10] Jongsma, L. A., Meeuwissen, E., Vos, P. G., & Maes, R. Rhythm perception speeding up or slowing down affects different subcomponents of the ERP P3 complex. Biological Psychology, 75, 219-228, (2007).

DOI: 10.1016/j.biopsycho.2007.02.003

Google Scholar

[11] Patel A. Language, music syntax and the brain, Nature Neuroscience, Vol 7 (6): 674-679, (2003).

Google Scholar

[12] Koelsch S, Gunter T C, Cramon D Y, et al. Bach speaks: A cortical language-network, serves the processing of music. NeuroImage, 17 (2): 956-966. (2002).

DOI: 10.1006/nimg.2002.1154

Google Scholar

[13] Koelsch, S., Fritz, T., Schulze, K., Alsop, D., and Schlaug, G. Adults and children processing music: an Mf RI study., NeuroImage, Vol 25: 1068-1076, (2005).

DOI: 10.1016/j.neuroimage.2004.12.050

Google Scholar

[14] Maess B, Koelsch S, Gunter T C, et al. Musical syntax is processed in Broca' s area: an MEG study. Nature Neuroscience, 4 (5) : 540-545, (2001).

DOI: 10.1038/87502

Google Scholar

[15] Brochard, R., Abecasis, D., & Potter, D. The Ticktock, of our internal clock: Direct Brain Evidence of Subjective Accents in Isochronous Sequences. American Psychological Society, Vol14, 362-366. (2003).

DOI: 10.1111/1467-9280.24441

Google Scholar

[16] Potter, D. D., Fenwick, M., Abecasis, D., & Brochard, R. Perceiving rhythm where none exists Event-related potentials correlates of subjective accenting. Cortex, Vol 45, 103-109. (2009).

DOI: 10.1016/j.cortex.2008.01.004

Google Scholar

[17] Pickens J, Bahrick L E. Do infants perceive invariant tempo and rhythm in auditory–visual events? [J] Infant Behavior and Development, 20: 349-357. ( 1997).

DOI: 10.1016/s0163-6383(97)90006-0

Google Scholar

[18] Hannon E E, Johnson S P. Infantsuse meter to categorize rhythms and melodies: Implications for musical structure learning[J]. Cognitive Psychology, 50: 354-377. (2005).

DOI: 10.1016/j.cogpsych.2004.09.003

Google Scholar