Investigation of Triaxial Stress State in Retained Austenite during Quenching of a Low Alloy Steel by In Situ X-Ray Diffraction

Article Preview

Abstract:

In situ XRD measurements were performed at ESRF, Grenoble, France (ID11) during quenching of a ball bearing steel AISI 52100 (100Cr6) with varying carbon content in solution. The evolution of austenite lattice parameter during cooling is nearly linear until Ms is reached and then, a divergent behavior can be observed. Assuming that the extrapolation of the linear range to room temperature gives the stress-free lattice spacing, an increasing compressive hydrostatic stress state is resulting. A strong effect of the carbon content was found. These results were confirmed by theoretical calculations based on data from the literature.

You have full access to the following eBook

Info:

Periodical:

Pages:

525-531

Citation:

Online since:

August 2014

Authors:

Export:

* - Corresponding Author

[1] G.B. Olson, W.S. Owen: Martensite, first ed., ASM International, (1992).

Google Scholar

[2] Z. Nishiyama, M.E. Fine, M. Meshii, C.M. Wayman: Martensitic Transformation, Academic Press, New York, (1978).

Google Scholar

[3] G.V. Kurdjumov, Metall. Mater. Trans. A, 7 (1976) 999-1011.

Google Scholar

[4] Metals Handbook, Vol. 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, tenth ed., ASM International (1990).

DOI: 10.31399/asm.hb.v01.9781627081610

Google Scholar

[5] C. Acht, B. Clausen, F. Hoffmann, H.W. Zoch in: H.W. Zoch, Th. Lübben, (Eds. ) Proc. 1st Int. Conf. on Distortion Engineering, 14-16. 09. 2005, Bremen, Germany, 251-258.

Google Scholar

[6] F. Frerichs, Th. Lübben, F. Hoffmann, H. -W. Zoch, Steel Res. Int, 78-7 (2007), 558-563.

Google Scholar

[7] L. Cheng, A. Böttger, T. H. deKeijser, E.J. Mittemeijer, Scripta Metall Mater, 24 (1990) 509-514.

Google Scholar

[8] Y. Liu, Z. L. Xie, H. Hiinninen, J. Van Humbeeck, J. Pietiktiinen, J. Phys. IV, 5-1 (1995) 179-184.

Google Scholar

[9] K. Y. Golovchiner, Physics of Metals and Metallography, 37-2 (1974) 126-130.

Google Scholar

[10] J. Epp, H. Surm, O. Kessler, T. Hirsch, Metal. Mater, Trans A, 38-10 (2007) 2371–2378.

Google Scholar

[11] J. -C. Labiche, O. Mathon, S. Pascarelli, M. A. Newton, G. Guilera Ferre, C. Curfs, G. Vaughan, A. Homs, chemistry, and catalysis, Review Sci. Inst, 78 (2007).

Google Scholar

[12] A. Hammersley, S.O. Svensson, A. Thompson, Nucl. Instrum. Methods A, 346 (1994) 312.

Google Scholar

[13] B.E. Warren: X-Ray Diffraction, Addison-Weseley, Reading, Mass., (1969).

Google Scholar

[14] M. Onink, C. M. Brakman, F. D. Tichelaar, E. J. Mittemeijer, S. van der Zwaaag, Acta Metall et Mat, 29 (1993) 1011-1016.

Google Scholar

[15] D.H. Sherman, S.M. Cross, S. Kim, F. Grandjean, G.J. Long, M.K. Miller, Metall. Mater. Trans. A, 38 (2007) 1698-1711.

Google Scholar

[16] J. Epp, T. Hirsch, C. Curfs, Metallurgical and Materials Transaction A, 43 (2012) 2210 – 2217.

Google Scholar

[17] F. Richter: Verlag Stahleisen GmbH, Düsseldorf, (1983).

Google Scholar

[18] V. Hauk, Structural and residual stress analysis by nondestructive methods, Elsevier Science, Amsterdam, (1997).

Google Scholar

[19] H. Behnken, Mikrospannungen in vielkristallinen und heterogenen Werkstoffen, Shaker Verlag, (2003).

Google Scholar