Ceramic Membranes in Carbon Dioxide Capture: Applications and Potentialities

Article Preview

Abstract:

Today, CO2 capture from e.g. flue gas has becoming an emerging opportunity for membrane gas separation. The flue gas coming out from power plants contains about 10-15% CO2, which should be separated before its sequestration. The most used membranes for this application are polymeric but they cannot be used at a high temperature. The flue gas exits at ca. 200°C, depending on the specific locations in the plant and, thus, it is highly desirable to separate it at high temperature. An alternative class to polymeric membranes is represented by the ceramic one which comprises zeolites, carbons, silica, perovskites membranes, that exhibit high fluxes and thermal resistance. However, a great challenge is to fabricate them as thin layers, avoiding formation of cracks that compromise the separation. Today, new solutions are in progress for the production of ceramic membrane able to overcome these limitations. For example, hybrid membranes able to combine the properties of different materials are proposed. Moreover, new works are done on mixed-matrix membranes, comprising of a molecular sieve guest phase dispersed in a polymer host matrix [3] which combines the advantage offered by the two materials. This work proposes an overview on the main applications of ceramic membranes in CO2 capture processes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-118

Citation:

Online since:

October 2010

Export:

Price:

[1] Ciferno J.P., Fout T. E., Jones A. P., Murphy J.T., Chemical Engineering Progress, April 2009, p.33.

Google Scholar

[2] Davidson O., Metz B., International Panel on Climate Change, Geneva, Switzerland, (2005). www. ipcc. ch.

Google Scholar

[3] Favre E., Journal of Membrane Science, 294, (2007), p.50.

Google Scholar

[4] Sridhar S., Smitha B., Aminabhavi T. M., Separation & Purification Reviews, 36, (2007), p.113.

Google Scholar

[5] Cuffe L., MacElroy J.M., Tacke M., Kozachok M., Mooney D.A., Journal of Membrane Science, 272, (2006), p.6.

Google Scholar

[6] Aaron D., Tsouris C., Separation Science and Technology, 40, (2005), p.321.

Google Scholar

[7] Mizukami K., Takaba H., Kobayashi Y., Oumi Y., Belosludov R.V., Takami S., Kubo M., Miyamoto A., Journal of Membrane Science 188, (2001), p.21.

DOI: 10.1016/s0376-7388(00)00693-1

Google Scholar

[8] Rui Z., Anderson M., Lin Y.S., Li Y., Journal of Membrane Science 345 (2009), p.110.

Google Scholar

[9] Caro J., Noack M., Microporous and Mesoporous Materials, 115, (2008), p.215.

Google Scholar

[10] Xomeritakis G., Tsai C.Y., Jiang Y.B., Brinker C.J., Journal of Membrane Science 341 (2009), p.30.

Google Scholar

[11] Zimmerman C.M., Singh A., Koros W.J., Journal of Membrane Science, 137, (1997), p.145.

Google Scholar

[12] Mahajan R., Koros W.J., Industrial Engineering and Chemistry Research, 39, (2000), p.2692.

Google Scholar

[13] Suda H., Haraya K., Journal of Physical Chemistry B, 101, (1997), p.3988.

Google Scholar

[14] Drioli E., Romano M., Industrial Engineering Chemistry Research, 40, (2001), p.1277.

Google Scholar

[15] Simmonds M., Hurst P., Wilkinson M.B., Watt C., Roberts C.A., 2003. www. co2captureproject. org.

Google Scholar

[16] Meisen, A. and Shuai, X., Energy Conversion Management 38, (1997), p.37.

Google Scholar

[17] Bounaceur R., Lape N., Roizard D., Vallieres C., Favre E., Energy, 31, (2006), p.2556.

DOI: 10.1016/j.energy.2005.10.038

Google Scholar

[18] Powell C. E., Qiao G. G., Journal of Membrane Science, 279, (2006), p.1.

Google Scholar

[19] Favre E., Journal of Membrane Science, 294, (2007), p.50.

Google Scholar

[20] Brunetti A., Bernardo P., Drioli E., Barbieri G., in Membrane Gas Separation, Wiley & Sons, Edited by Yampolskii Y., Pinnau I., pp. xx. (Accepted).

Google Scholar

[21] Eide L.I., Anheden M., Lyngfelt A., Abanades C., Younes M., Clodic D., Bill A.A., Feron P.H.M., Rojey A., Giroudière F., Oil & Gas Science & Technology, 60, (2005), p.497.

DOI: 10.2516/ogst:2005031

Google Scholar

[22] Bounaceur R., Lape N., Roizard D., Vallieres C., Favre E., Energy, 31, (2006), p.2556.

DOI: 10.1016/j.energy.2005.10.038

Google Scholar

[23] Koros W. J., Pinnau I., in Polymeric Gas Separation Membranes, D.R. Paul, Y. Yampolskii, (Eds. ); CRC Press: Boca Raton, FL, (1994).

Google Scholar

[24] Freeman B.D., Macromolecules, 32, (1999), p.375.

Google Scholar

[25] Robeson L.M., Journal of Membrane Science, 62, (1991), p.165.

Google Scholar

[26] Bernardo P., Drioli E., Golemme G., Ind. Eng. Chem. Res. (2009), DOI: 10. 1021/ie8019032.

Google Scholar

[27] Li K., Caphter 4 in Ceramic Membranes for Separation and Reaction, (2007), Edited by Wiley, ISBN: 9780470014400.

Google Scholar

[28] Meinema H.A., Dirrix R.W.J., Brinkman H.W., Terpstra R.A., Jekerle J., Kösters P.H., International Ceramic Review 54 (2), (2005), p.86.

Google Scholar

[29] Morooka S., Kusakabe K., Materials Research Bulletin 23 (1999), 25-29.

Google Scholar

[30] Itoh, N. and Haraya, K., Catalysis Today, 56, (2000), p.103.

Google Scholar

[31] Lie J. A., Vassbotn T., Hagg M. B., Grainger D., Kim T. -J., T Mejdell, International Journal of Greenhousegas Control 1 (2007), p.309.

Google Scholar

[32] Ismail A.F., Goh P.S., Sanip S.M., Aziz M., Separation and Purification Technology 70 (2009), p.12.

Google Scholar

[33] Hu Q., Marand E., Dhingra S., Fritsch D., Wen J., Wilkes G., Journal of Membrane Science, 135, (1997), p.65.

Google Scholar

[34] Zimmerman C.M., Singh A., Koros W.J., Journal of Membrane Science, 137, (1997), p.145.

Google Scholar

[35] Mahajan R., Koros W.J., Industrial Engineering and Chemistry Research, 39, (2000), p.2692.

Google Scholar

[36] Robeson L.M., Journal of Membrane Science, 320, (2008), p.390.

Google Scholar

[37] Ahn J., Chung W. -J, Pinnau I., Guiver M.D., Journal of Membrane Science 314 (2008) p.123.

Google Scholar

[38] Baker R. W., Proceedings of 12th Aachener membran kolloquim, October 29-30, (2008), Aachen (Germany).

Google Scholar

[39] Dindore V.Y., Brilman D.W.F., Feron P.H.M., Versteeg G.F., Journal of Membrane Science, (2004) 235, p.99.

Google Scholar

[40] Falk-Pedersen O., Dannstrom H., Energy Conversion and Management, 1997, 38, p.81.

Google Scholar

[41] Mavroudi M., Kaldis S.P., Sakellaropoulos, G.P., Fuel 82, 2003, (15-17), p.2153.

Google Scholar

[42] Li J. -L., Chen B. -H., Separation and Purification Technology 41 (2), (2005), p.109.

Google Scholar

[43] Feron, P.H.M., Jansen, A.E., Energy Conversion and Management, 38, (1997) p.93.

Google Scholar

[44] Simmonds M., Hurst P., Wilkinson M.B., Watt C., Roberts C.A., In: The Proceedings of the Sixth International Conference on Greenhouse Gas Control Technologies (GHGT-6), (2002), Kyoto, Elsevier, London.

Google Scholar

[45] Barbe A.M., Hogan P.A., Johnson R.A., Journal of Membrane Science 172 (1-2), (2000), p.149.

Google Scholar

[46] Dindore V.Y., Brilman D.W.F., Feron P.H.M., Versteeg G.F., Journal of Membrane Science 235, (2000) p.99.

Google Scholar

[47] Koonaphapdeelert S., Li Z. W. K., Chemical Engineering Science 64 (2009) p.1.

Google Scholar

[48] Schilderman A.M., Raeissi S., Peters C.J., Fluid Phase Equilibria 260, (2007), p.19.

Google Scholar

[49] Tang J., Sun W., Tang H., Rodosz M., Shen Y., Macromolecules 38, (2005), p. (2037).

Google Scholar

[50] Lin Y.S., Separation and Purification Technology, (2001), 25, p.39.

Google Scholar

[51] Liu S., Gavalas, G., Journal of Membrane Science, 246, ( 2005), p.103.

Google Scholar

[52] Tan X., Pang Z., Li K., Journal of Membrane Science, 310 (2008), p.550.

Google Scholar

[53] Chung S.J., Park J.H., Li D., Ida J.I., Kumakiri I., Lin J.Y.S., Ind. Eng. Chem. Res., 44, (2005) p.7999.

Google Scholar

[54] Kawamura H., Yamaguchi T., Nair B.N., Nakagawa K., Nakao S., Journal of Chemical Engineering of Japan, 38, (2005) p.322.

Google Scholar

[55] Chung S.J., Park J.H., Li D., Ida J.I., Kumakiri I., Lin Jerry Y.S., "Ind. Eng. Chem. Res. 44 (2005) p.7999.

Google Scholar

[56] Bredesen R., Jordal K., Bolland O., Chemical Engineering and Processing 43 (2004) p.1129.

Google Scholar

[57] Brunetti A., Barbieri G., Drioli E., Lee K. -H., Sea B., Lee D. -W., Chemical Engineering and Processing, 46, (2007), p.119.

Google Scholar

[58] Bernardo P. Algieri C., Barbieri G., Drioli E., Catalysis Today 118 (2006), p.90.

Google Scholar

[59] Bernardo P., Algieri C., Barbieri G., Drioli E., Separation and Purification Technology, 62, (2008), p.629.

Google Scholar

[60] B.F.K. Kingsbury, Z. Wu, K. Li, Catalysis Today (2010), doi: 10. 1016/j. cattod. 2010. 02. 039.

Google Scholar

[61] Finley J., Filtration+Separation (2005).

Google Scholar

[62] http: /www. pall. com/industrialmaterials_49726. asp.

Google Scholar

[63] http: /www. pall. com/pdf/Gas_Separation_Membrane. pdf.

Google Scholar