Raman Spectroscopy Study on Na2/3Mn1-xFexO2 Oxides

Article Preview

Abstract:

The structural properties of sodium manganates and iron substituted sodium manganates with compositions Na2/3Mn1-xFexO2 (x=0, 1/3 and 2/3) were studied by Raman spectroscopy. The Raman spectroscopy allows distinguishing between layered phases with orthorhombic (Cmcm space group) and hexagonal (P63/mmc space group) distortion. It has been found that the crystal structure and the composition of Na2/3MnO2 display a strong dependence on the history of the thermal treatment. The orthorhombic distorted modification is stabilized at high temperatures (1000 oC). At lower quenching temperature, there is a phase separation into an orthorhombic and a hexagonal modification, concomitant with an increase in the oxidation state of Mn. When Fe substitutes for Mn, the hexagonal modification is stabilized. In order to understand the origin of the Raman spectra of Na2/3Mn1-xFexO2, we have used Na2/3Co2/3Mn1/3O2 as a standard for hexagonal structure, where Co3+ and Mn4+ are statistically distributed in the transition metal layers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-65

Citation:

Online since:

October 2010

Export:

Price:

[1] Y. Wang, N.S. Rgado, R.J. Cava and N.P. Ong: Nature Vol. 423 (2003), p.425.

Google Scholar

[2] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian and T. Sasaki: Nature Vol. 422 (2003), p.53.

DOI: 10.1038/nature01450

Google Scholar

[3] L. B. Luo, Y. G. Zhao, G. M. Zhang, S. M. Guo, Z. Li and J. L. Luo: Phys. Rev. B Vol. 75 (2007), p.125115.

Google Scholar

[4] J. -P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier and P. Hagenmuller: J. Solid State Chem. Vol. 3 (1971), p.1.

DOI: 10.1016/0022-4596(71)90001-6

Google Scholar

[5] M. S. Whittingham and P.Y. Zavalij: Solid State Ionics Vol. 131 (2000), p.109.

Google Scholar

[6] A. Mendiboure, C. Delmas and P. Hagenmuller: J. Solid State Chem. Vol. 57 (1985), p.323.

Google Scholar

[7] L. Bordet-Le Guenne, P. Deniard, P. Biensan, C. Siret and R. Brec: J. Mater. Chem. Vol. 10 (2000), p.2201.

DOI: 10.1039/b004598p

Google Scholar

[8] J. M. Paulsen and J. R. Dahn: Solid State Ionics Vol. 126 (1999), p.3.

Google Scholar

[9] C. Fouassier, C. Delmas and P. Hagenmuller: Mater. Res. Bull. Vol. 10 (1975), p.443.

Google Scholar

[10] R. Baddour-Hadjean and J. -P. Pereira-Ramos: Chem. Rev. Vol. 110 (2010), p.1278.

Google Scholar

[11] M.N. Iliev, A.P. Litvinchuk, R.L. Meng, Y.Y. Sun, J. Cmaidalka and C.W. Chu: Physica C Vol. 402 (2004), p.239.

DOI: 10.1016/j.physc.2003.09.085

Google Scholar

[12] T. Zhou, D. Zhang, T. W. Button, A. J. Wright and C. Greaves: J. Mater. Chem. Vol. 19 (2009), p.1123.

Google Scholar

[13] H. X. Yang, Y. Xia, Y. G. Shi, H. F. Tian, R. J. Xiao, X. Liu, Y. L. Liu and J. Q. Li: Phys. Rev. B Vol. 74 (2006), p.094301.

Google Scholar

[14] F. Tournadre, L. Croguennec, I. Saadoune, F. Weill, Y. Shao-Horn, P. Willmann and C. Delmas: Chem. Mater. Vol. 16 (2004), p.1411.

DOI: 10.1021/cm035176p

Google Scholar

[15] A. Donkov, M. M. Korshunov, I. Eremin, P. Lemmens, V. Gnezdilov, F. C. Chou and C. T. Lin: Phys. Rev. B Vol. 77 (2008), p.100504.

Google Scholar

[16] J. F. Qu, W. Wang, Y. Chen, G. Li and X. G. Li: Phys. Rev. B Vol. 73 (2006), p.092518.

Google Scholar

[17] P. Lemmens, V. Gnezdilov, N.N. Kovaleva, K.Y. Choik, H. Sakurai, E. Takayama-Muromachi, K. Takada, T. Sasaki, F.C. Chou, C.T. Lin and B. Keimer: arXiv: cond-mat/0309186v1.

Google Scholar

[18] K. Samanta, P. Bhattacharya, R.S. Katiyar, W. Iwamoto, P.G. Pagliuso and C. Rettori: Phys. Rev. B Vol. 73 (2006), p.245213.

Google Scholar