Chromogenics for Sustainable Energy: Some Advances in Thermochromics and Electrochromics

Article Preview

Abstract:

Chromogenic materials are able to change their optical properties in response to external stimuli such as temperature (in thermochromic materials) and electrical charge insertion (in electrochromic materials). Below we review some recent advances for these types of materials. Specifically we first discuss the limitations of thermochromic VO2 films for energy efficient fenestration and show from calculations that nanocomposites containing VO2 can have superior properties and display high luminous transmittance and large temperature-dependent solar transmittance modulation. Even better results may be found for nanoparticles of VO2:Mg. In the second part of the paper we survey some recent progress for electrochromic devices and show that W oxide films have increased coloration efficiency when some Ni oxide is added. We also present initial results for flexible electrochromic foils produced by roll-to-roll coating and continuous lamination.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-64

Citation:

Online since:

October 2010

Export:

Price:

[1] UNEP: Buildings and Climate Change: Status, Challenges and Opportunities, United Nations Environment Programme, Paris, France (2007).

Google Scholar

[2] B. Richter, D. Goldston, G. Crabtree, L. Glicksman, D. Goldstein, D. Greene, D. Kammen, M. Levine, M. Lubell, M. Sawitz, D. Sperling, F. Schlachter, J. Scofield and D. Dawson: Rev. Mod. Phys. Vol. 80 (2008), p. S1.

DOI: 10.1103/revmodphys.80.s1

Google Scholar

[3] J.A. Leech, W.C. Nelson, R.T. Burnett, A. Aaron and M.E. Raizenne: J. Exposure Anal. Environm. Epidem. Vol. 12 (2002), p.427.

Google Scholar

[4] C.G. Granqvist, S.V. Green, S. -Y. Li, N.R. Mlyuka and G.A. Niklasson, in: Society of Vacuum Coaters 53rd Annual Technical Conference Proceedings, Society of Vacuum Coaters, Albuquerque, NM (2010), in press.

DOI: 10.14332/svc13.proc.1030

Google Scholar

[5] C.M. Lampert and C.G. Granqvist, editors: Large-Area Chromogenics: Materials and Devices for Transmittance Control, SPIE Engineering Press, Bellingham, WA (1990).

DOI: 10.1117/12.2283605

Google Scholar

[6] G.B. Smith and C.G. Granqvist: Green Nanotechnology: Solutions for Sustainability & Energy in the Built Environment, CRC Press, Boca Raton, FL (2010), in press.

Google Scholar

[7] C.G. Granqvist: Sol. Energy Mater. Sol. Cells Vol. 91 (2007), p.1529.

Google Scholar

[8] M. Tazawa, P. Jin and S. Tanemura: Appl. Opt. Vol. 37 (1998), p.1858.

Google Scholar

[9] N.R. Mlyuka, G.A. Niklasson and C.G. Granqvist: Phys. Stat. Sol. A Vol. 206 (2009), p.2155.

Google Scholar

[10] G. Wyszecki and W.S. Stiles: Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed., Wiley, New York, NY (2000).

DOI: 10.1002/col.5080080421

Google Scholar

[11] ASTM G173-03, in: Annual Book of ASTM Standards, Vol. 14. 04, American Society for Testing and Materials, Philadelphia, PA (2003).

Google Scholar

[12] S. -Y. Li, G.A. Niklasson and C.G. Granqvist: to be published.

Google Scholar

[13] C.G. Granqvist and O. Hunderi: Phys. Rev. B Vol. 16 (1977), p.3513; Vol. 18 (1978), p.2897.

Google Scholar

[14] J.C. Maxwell-Garnett: Philos. Trans. R. Soc. Lond. Vol. 203 (1904), p.385; Vol. 205 (1906), p.237.

Google Scholar

[15] G.A. Niklasson, C.G. Granqvist and O. Hunderi: Appl. Opt. Vol. 20 (1981), p.26.

Google Scholar

[16] L.D. Landau, E.M. Lifshitz and L.P. Pitaevskii: Electrodynamics of Continuous Media, 2nd ed., Butterworth Heinemann, Oxford (1984).

Google Scholar

[17] A. Gentle, A.I. Maaroof and G.B. Smith: Nanotechnol. Vol. 18 (2007), p.025202.

Google Scholar

[18] N.R. Mlyuka, G.A. Niklasson and C.G. Granqvist, Appl. Phys. Lett. Vol. 95 (2009), p.171909.

Google Scholar

[19] C.G. Granqvist: Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, (1995).

Google Scholar

[20] G.A. Niklasson and C.G. Granqvist: J. Mater. Chem. Vol. 17 (2007), p.127.

Google Scholar

[21] I. Hamberg and C.G. Granqvist: J. Appl. Phys. Vol. 60 (1986), p. R123.

Google Scholar

[22] L. Berggren, J.C. Jonsson and G.A. Niklasson: J. Appl. Phys. Vol. 102 (2007), p.083538.

Google Scholar

[23] B.W. Crandall and R.S. Faughnan: Appl. Phys. Lett. Vol. 31 (1977), p.834.

Google Scholar

[24] S. Sato and Y. Seino: Trans. Inst. Electronic Commun. Engr. Japan Vol. 65-C (1982), p.629.

Google Scholar

[25] S. Green, J. Backholm, P. Georén, C.G. Granqvist and G.A. Niklasson: Sol. Energy Mater. Sol. Cells Vol. 93 (2009), p. (2050).

Google Scholar

[26] S.V. Green, A. Kuzmin, J. Purans, C.G. Granqvist and G.A. Niklasson: to be published.

Google Scholar

[27] A. Azens, G. Gustavsson, R. Karmhag and C.G. Granqvist: Solid State Ionics Vol. 165 (2003), p.1.

Google Scholar

[28] C.G. Granqvist, S. Green, G.A. Niklasson, N.R. Mlyuka, S. von Kræmer and P. Georén: Thin Solid Films Vol. 518 (2010), p.3046.

DOI: 10.1016/j.tsf.2009.08.058

Google Scholar

[29] A.I. Sidorov, O.P. Vinogradova, I.E. Obyknovennaya and T. A. Khrushchova: Pis'ma Zh. Tekh. Fiz. Vol. 33 (13) (2007), p.85; English translation: Tech. Phys. Lett. Vol. 33 (2007), p.581.

DOI: 10.1134/s1063785007070127

Google Scholar

[30] O.P. Vinogradova, I.E. Obyknovennaya, A.I. Sidorov, V.A. Klimov, E.B. Shadrin, S.D. Khanin and T.A. Khrushcheva: Fiz. Tverd. Tela Vol. 50 (2008), p.734; English translation: Phys. Solid State Vol. 50 (2008), p.768.

DOI: 10.1134/s1063783408040288

Google Scholar

[31] C.G. Granqvist, in: Materials Science for Solar Energy Conversion Systems, edited by C.G. Granqvist, Pergamon, Oxford (1990), p.106.

Google Scholar

[32] R. Baetens, B.P. Jelle, J.V. Thue, M.J. Tenpierik, S. Grynning, S. Uvsløkk and A. Gustavsen: Energy Buildings Vol. 43 (2010), p.147.

DOI: 10.1016/j.enbuild.2009.09.005

Google Scholar