Effect of Air Temperature on Convective Drying Assisted by High Power Ultrasound

Article Preview

Abstract:

Drying kinetics of carrot cubes were carried out at 1 m/s air velocity at different air drying temperatures (30, 40, 50, 60 and 70±0.1 °C) (AIR experiments), and also at the same experimental conditions but applying high power ultrasound (US experiments). Two kind of diffusion models were used to simulate the drying kinetics, according to external resistance to mass transfer being considered (ER model) or neglected (NER model) for solving the diffusion equation. Diffusion ER model was solved using a finite difference method. Drying rate increased as air temperature was higher. Ultrasound also increased drying rate at the different temperatures, but the improvement on drying rate decreased at high temperatures, and almost disappeared at 70 °C. Effective moisture diffusivities only showed an Arrhenius type relationship with temperature for AIR experiments. The NER diffusion model was not accurate to simulate the drying kinetics at any experimental conditions tested. However, diffusion ER model provided a high closeness between experimental and calculated drying data (VAR>99.80). Through the parameters identified of the ER diffusion model, effective moisture diffusivity and mass transfer coefficient, the influence of the power ultrasound application on internal and external resistance to mass transfer was shown to be significant (p<0.05).

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 258-260)

Pages:

563-574

Citation:

Online since:

October 2006

Export:

Price:

[1] C. Ratti: J. Food Eng. Vol. 49 (2001), p.311.

Google Scholar

[2] A. Mulet: J. Food Eng. Vol. 22 (1994), p.329.

Google Scholar

[3] A. Mulet, N. Sanjuán, J. Bon and S. Simal: Eur. Food Res. and Technol Vol. 210 (1999), p.80.

Google Scholar

[4] N.M. Panagiotou, M.K. Krokida, Z.B. Maroulis and G.D. Saravacos: Int. J. Food Prop. Vol. 7 (2004), p.273.

Google Scholar

[5] W. K Lewis: Ind. Eng. Chem. Vol. 13 (1921), p.427.

Google Scholar

[6] T.K. Sherwood: Ind. Eng. Chem. Vol. 21 (1929), p.12.

Google Scholar

[7] W. Cao, Y. Nishiyama, S. Koide and Z.H. Lu: Biosystems Eng. Vol. 87 (2004), p.445.

Google Scholar

[8] Y.P. Lin, J.H. Tsen and A.E. King: J. Food Eng. Vol. 68 (2005), p.249.

Google Scholar

[9] J.V. García-Pérez, J.A. Cárcel, S. De la Fuente and E. Riera: Ultrasonics in press (2006).

Google Scholar

[10] J. Stojanovic and J.L. Silva: Dry. Technol. Vol. 24 (2006), p.165.

Google Scholar

[11] J.A. Gallego-Juárez, G. Rodríguez-Corral, J.C. Gálvez-Moraleda and T.S. Yang: Dry. Technol. Vol. 17 (1999), p.597.

Google Scholar

[12] H.S. Muralidhara, D. Ensminger and A. Putnam: Dry. Technol. Vol. 3 (1985), p.529.

Google Scholar

[13] J.A. Cárcel: Influencia de los ultrasonidos de potencia en procesos de transferencia de materia (Doctoral Thesis Polytechnic University of Valencia 2003).

Google Scholar

[14] E.S. Sánchez, S. Simal, N. Sanjuán and A. Mulet: Eur. Food Res. Technol. Vol. 209 (1999), p.215.

Google Scholar

[15] S. Simal, J. Benedito, E.S. Sánchez and C. Rosselló: J. Food Eng. Vol. 36 (1998), p.323.

Google Scholar

[16] J.A. Cárcel, J. Benedito, C. Rosselló and A. Mulet: J. Food Eng. (2006) - in press.

Google Scholar

[17] K.A. Taiwo, M.N. Estiaghi, B.I.O. Ade-Omowaye and D. Knorr: Int. J. Food Sci. Technol. Vol. 38 (2003), p.693.

Google Scholar

[18] M. Romdhane and C. Gourdon. Chem. Eng. J. Vol. 87 (2002), p.11.

Google Scholar

[19] S. Balachandran, S.E. Kentish, R. Mawson and M. Ashokkumar: Ultrason. Sonochem. (2006) - in press.

Google Scholar

[20] E. Riera, Y. Golas, A. Blanco, J.A. Gallego, M. Blasco and A. Mulet. Ultrason. Sonochem. Vol. 11 (2004), p.241.

Google Scholar

[21] M.E. Arkhangel'skii and Y.G. Stanikov: Diffusion in heterogeneous systems (In Physical principles of ultrasonic technology, Ed. L.D. Rozenberg, Plenum Press, USA 1973).

Google Scholar

[22] Y.Y. Birisov and N.M. Gynkina: Acoustic Drying. (In Physical principles of ultrasonic technology, Ed. L.D. Rozenberg, Plenum Press, USA 1973).

Google Scholar

[23] J.A. Gallego-Juárez: Some applications of air-borne power ultrasound to food processing (In Ultrasound in Food Processing, Eds. M.J.W. Povey and T.J. Mason, Thomson Science, UK 1998).

Google Scholar

[24] S. De la Fuente, E. Riera, V.M. Acosta, A. Blanco and J.A. Gallego-Juarez: Ultrasonics (2006) - in press.

Google Scholar

[25] S. De la Fuente, G. Rodríguez, E. Riera, J.A. Gallego-Juarez and A. Mulet: Revista de Acústica Vol. 36 (2005), p.19.

Google Scholar

[26] N. Sanjuán, M. Lozano, P. Garcia-Pascual and A. Mulet: J. Sci. Food Agric. Vol. 83 (2003), p.697.

Google Scholar

[27] AOAC. Official Methods of Analysis (Association of Official Chemist, USA 1997).

Google Scholar

[28] S. Simal, C. Rosselló and A. Mulet. Trends Chem. Eng. Vol. 4. (1998), p.171.

Google Scholar

[29] S. Simal, A. Femenia, J.A. Cárcel and C. Rosselló: J. Sci. Food Agric. Vol. 85 (2005), p.425.

Google Scholar

[30] J. Crank. The Mathematics of diffusion (Clarendon Press, UK 1975).

Google Scholar

[31] S. Simal, A. Femenia, P. García-Pascual and C. Rosselló: J. Food Eng. Vol. 58 (2003), p.193.

Google Scholar

[32] A. Mulet, M. Blasco, J. García-Reverter and J. V. García-Pérez: J. Food Sci. Vol. 70 (2005), p.318.

Google Scholar

[33] S. Simal, E.S. Sanchez, J. Bon, A. Femenia and C. Rosselló. J. Food Eng. Vol. 48 (2001), p.269.

Google Scholar

[34] S. Simal, A. Femenia, M.C. Garau and C. Rosselló: J. Food Eng. Vol. 66 (2005), p.323.

Google Scholar

[35] Z.B. Maroulis, G.D. Saravacos, N.M. Panagiotou and M.K. Krokida. Moisture diffusivity data compilation for foodstuffs: effect of material moisture content and temperature. Int. J. Food Prop. Vol. 4 (2001), p.225.

DOI: 10.1081/jfp-100105189

Google Scholar

[36] P.M. Berthouex and L.C. Brown: Statistics for Enviromental Engineers (CRC Press, USA 1994).

Google Scholar

[37] M.C. Garau, S. Simal, A. Femenia and C. Rosselló: J. Food Eng. Vol. 75 (2006), p.288.

Google Scholar

[38] X.W. Zhang, X. Liu, D.X. Gu, W. Zhou, R.L. Wang and P. Liu: J. Sci. Food Agric. Vol. 40 (1996), p.303.

Google Scholar

[39] J. Srikiatden and S.S. Roberts: J. Food Eng. Vol. 74 (2006), p.143.

Google Scholar

[40] I.L. Ruiz-Lopez, A.V. Córdova, G.C. Rodríguez-Jimenes and M.A. Garcia-Alvarado: J. Food Eng. Vol. 63 (2004), p.122.

Google Scholar

[41] A. Mulet, A. Berna and C. Rosselló: Dry. Technol. Vol. 7 (1989), p.537.

Google Scholar

[42] S. Nakagawa, T. Yamashita and H. Miura. Nipon Shokutin Kagaku Kagaku Kaishi Vol. 43 (1996), p.388.

Google Scholar

[43] M. Blasco, J.V. García-Pérez, J. Bon, J.E. Carreres and A. Mulet: Food Sci. Tech. Int. Vol. 12 (2006), p.315.

Google Scholar

[44] A. Reyes, P.I. Alvarez and F.H. Maquardt. Dry. Technol. Vol. 20 (2002), p.1463.

Google Scholar