Positron Chemistry in Polymers

Article Preview

Abstract:

Positron chemistry refers to chemical processes of high-energy positrons injected into molecular substances, the most interesting of which is the formation of positronium (Ps), the hydrogen-like bound state between a positron and an electron. Ps is formed predominantly by fast intra-track radiation chemical processes. In polymers it tends to be localized in intra/inter-molecular open space in the sparsely packed amorphous structure. Whilst short-lived singlet para-positronium (p-Ps) undergoes self-annihilation, the positron in long-lived triplet ortho-positronium (o-Ps) annihilates with one of the spin opposite electrons bound in the surrounding polymer molecules. This process is called pick-off annihilation. The pick-off annihilation lifetime reflects the polymer chain packing through the size of the volume, where Ps is localized. Positrons are used to probe the amorphous structure of various polymeric systems. In this article, basic concepts and experimental techniques of positron chemistry in polymers as well as applications to the characterization of functional polymeric materials are overviewed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

253-274

Citation:

Online since:

September 2012

Export:

Price:

[1] D.M. Schrader, Y.C. Jean, Positron and Positronium Chemistry, Elsevier, Amsterdam, Oxford, New York, Tokyo, (1988).

Google Scholar

[2] O.E. Mogensen, Positron Annihilation in Chemistry, Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, (1995).

DOI: 10.1002/abio.370130410

Google Scholar

[3] Y.C. Jean, P.E. Mallon, D.M. Schrader, Principles and Applications of Positron & Positronium Chemistry, World Scientific, New Jersey, London, Singapore, Hong Kong, (2003).

DOI: 10.1142/9789812775610_0001

Google Scholar

[4] A. Rich, Recent experimental advances in positronium research, Rev. Mod. Phys. 53 (1981) 127-165.

DOI: 10.1103/revmodphys.53.127

Google Scholar

[5] P.J. Schultz, K.G. Lynn, Interaction of positron beams with surface, thin films, and interfaces, Rev. Mod. Phys. 60 (1988) 701-779.

DOI: 10.1103/revmodphys.60.701

Google Scholar

[6] H. Saito, Y. Nagashima, T. Kurihara, T. Hyodo, A new positron lifetime spectrometer using a fast digital oscilloscope and BaF2 scintillators, Nucl. Instrum. Methods A 487 (2002) 612-617.

DOI: 10.1016/s0168-9002(01)02172-6

Google Scholar

[7] M. Yamawaki, Y. Kobayashi, K. Hattori, Y. Watanabe, Novel system for potential nondestructive material inspection using positron annihilation lifetime spectroscopy, Jap. J. Appl. Phys. 50 (2011) 086301-1-086301-5.

DOI: 10.1143/jjap.50.086301

Google Scholar

[8] P. Kirkegaard, M. Eldrup, Positronfit: A versatile program for analyzing positron lifetime spectra, Comput. Phys. Commun. 3 (1972) 240-255.

DOI: 10.1016/0010-4655(72)90070-7

Google Scholar

[9] P. Kirkegaard, M. Eldrup, Positronfit extended: A new version of a program for analyzing positron lifetime spectra, Comput. Phys. Commun. 7 (1974) 401-409.

DOI: 10.1016/0010-4655(74)90070-8

Google Scholar

[10] R.B. Gregory, Y.K. Zhu, Analysis of positron annihilation lifetime data by a numerical Laplace inversion with the program CONTIN, Nucl. Instrum. Methods A 290 (1990) 172-182.

DOI: 10.1016/0168-9002(90)90358-d

Google Scholar

[11] A. Shukla, M. Peter, L. Hoffmann, Analysis of positron lifetime spectra using quantified maximum entropy and a general linear filter, ibid 335 (1993) 310-317.

DOI: 10.1016/0168-9002(93)90286-q

Google Scholar

[12] J. Kansy, Microcomputer program for analysis of positron annihilation lifetime spectra, ibid 374 (1996) 235-244.

Google Scholar

[13] J.V. Olsen, P. Kirkegaard, N.J. Pedersen, M. Eldrup, PALSfit: A new program for the evaluation of positron lifetime spectra, Phys. Stat. Solidi C 4 (2007) 4004-4006.

DOI: 10.1002/pssc.200675868

Google Scholar

[14] K. Venkateswaran, K.L. Cheng, Y.C. Jean, Application of positron annihilation to study the surface properties of porous resins, J. Phys. Chem. 88 (1984) 2465-2469.

DOI: 10.1021/j150656a010

Google Scholar

[15] K. Sato, K. Ito, K. Hirata, R.S. Yu, Y. Kobayashi, Intrinsic momentum distributions of positron and positronium annihilation in polymers, Phys. Rev. B 71 (2005) 012201-1-012201-4.

DOI: 10.1103/physrevb.71.012201

Google Scholar

[16] Y. Kobayashi, K. Haraya, S. Hattori, T. Sasuga, Evaluation of polymer free volume by positron annihilation and gas diffusivity measurements, Polymer 35 (1994) 925-928.

DOI: 10.1016/0032-3861(94)90934-2

Google Scholar

[17] A. Uedono, T. Kawano, S. Tanigawa, M. Ban, M. Kyoto, A positron age-momentum correlation spectrometer for the study of open spaces in amorphous polymers, Nucl. Instrum. Methods B 103 (1995) 511-516.

DOI: 10.1016/0168-583x(95)00650-8

Google Scholar

[18] N. Suzuki, Y. Nagai, T. Hyodo, Can a newly developed AMOC technique be applied to determine the para-positronium lifetime?, Radiat. Phys. Chem. 58 (2000) 777-780.

DOI: 10.1016/s0969-806x(00)00258-9

Google Scholar

[19] K. Sato, H. Murakami, K. Ito, K. Hirata, Y. Kobayashi, Probing the elemental environment around the free volume in polymers with positron annihilation age-momentum correlation spectroscopy, Macromolecules 42 (2009) 4853-4857.

DOI: 10.1021/ma900462a

Google Scholar

[20] A.P. Mills, Experimentation with low-energy positron beams, in: W. Brandt, A. Dupasquier (Eds. ), Proceedings of the International School of Physics Enrico Fermi, Course 83, North-Holland, Amsterdam, New York, Oxford, 1983, pp.432-509.

DOI: 10.1002/bbpc.19860900917

Google Scholar

[21] T. Akahane, T. Chiba, N. Shiotani, S. Tanigawa, T. Mikado, R. Suzuki, M. Chiwaki, T. Yamazaki, T. Tomimasu, Stretching of slow positron pulses generated with an electron linac, Appl. Phys. A 51 (1990) 146-150.

DOI: 10.1007/bf00324279

Google Scholar

[22] T. Hyodo, K. Wada, A. Yagishita, T. Kosuge, Y. Saito, T. Kurihara, T. Kikuchi, A. Shirakawa, T. Sanami, M. Ikeda, S. Ohsawa, K. Kakihara, T. Shidara, KEK-IMSS slow positron facility, J. Phys. Conf. Ser. 262 (2011) 012026-1-012026-5.

DOI: 10.1088/1742-6596/262/1/012026

Google Scholar

[23] A. van Veen, H. Schut, F. Labohm, J. de Roode, Positron extraction and transport in a nuclear-reactor-based positron beam, Nucl. Instrum. Methods A 427 (1999) 266-270.

DOI: 10.1016/s0168-9002(98)01517-4

Google Scholar

[24] C. Hugenschmidt, G. Kogel, R. Repper, K. Schreckenbach, P. Sperr, B. Strasser, W. Triftshauser, Monoenergetic positron beam at the reactor based positron source at FRM-11, Nucl. Instrrum. Methods B 192 (2002) 97-101.

DOI: 10.1016/s0168-583x(02)00788-7

Google Scholar

[25] A. Vehanen, K. Saarinen, P. Hautojarvi, H. Huomo, Profiling multilayer structures with monoenergetic positrons, Phys. Rev. B 35 (1987) 4606-4610.

DOI: 10.1103/physrevb.35.4606

Google Scholar

[26] A. Vehanen, Defect profiling with slow positrons, in: L. Dorikens-Vanpraet, M. Dorikens, D. Segers (Eds. ), Positron Annihilation, World Scientific, Singapore, New Jersey, Hong Kong, 1989, pp.39-51.

DOI: 10.1515/9783112494820-017

Google Scholar

[27] Y. Kobayashi, I. Kojima, S. Hishita, T. Suzuki, E. Asari, M. Kitajima, Damage-depth profiling of an ion-irradiated polymer by monoenergetic positron beams, Phys. Rev. B 52 (1995) 823-828.

DOI: 10.1103/physrevb.52.823

Google Scholar

[28] S. Szpala, M.P. Petkov, K.G. Lynn, A simple positron lifetime spectrometer for a magnetically guided low-energy beam, Rev. Sci. Instrum. 73 (2002) 147-155.

DOI: 10.1063/1.1424905

Google Scholar

[29] D.W. Gidley, H-G. Peng, R.S. Vallery, Positron annihilation as a method to characterize porous materials, Annual Rev. Materials Res. 36 (2006) 49-79.

DOI: 10.1146/annurev.matsci.36.111904.135144

Google Scholar

[30] D. Schodlbauer, P. Sperr, K. Kogel, W. Triftshauser, A pulsing system for low energy positrons, Nucl. Instrum. Methods B 34 (1988) 258-268.

Google Scholar

[31] R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki, T. Tomimasu, Slow positron pulsing system for variable energy positron lifetime spectroscopy, Jap. J. Appl. Phys. 30 (1991) L532-L534.

DOI: 10.1143/jjap.30.l532

Google Scholar

[32] S.V. Stepanov, V.M. Byakov, Physical and radiation chemistry of the positron and positronium, in: Y.C. Jean, P.E. Mallon, D.M. Schrader (Eds. ), Principles and Applications of Positron & Positronium Chemistry, World Scientific, New Jersey, London, Singapore, Hong Kong, 2003, pp.117-149.

DOI: 10.1142/9789812775610_0005

Google Scholar

[33] A. Ore, Annihilation of positrons in gases, Årbok /Universitetet i Bergen. Naturvitenskapelig rekke 1949: 9, Bergen, (1950).

Google Scholar

[34] V.M. Byakov, V.I. Gol'danskii, V.P. Shantarovich, O vozmodznoi roli sukhikh, elektronov v obrazovanii pozitroniya v dzidkosti, Doklady Akademii Nauk SSSR 219 (1974) 633-636.

Google Scholar

[35] O.E. Mogensen, Spur reaction model of positronium formation, J. Chem. Phys. 60 (1974) 998-1004.

Google Scholar

[36] L. Xie, G.B. DeMaggio, W.E. Frieze, J. DeVries, D.W. Gidley, H.A. Hristov, A.F. Yee, Positronium formation as a probe of polymer surfaces and thin films, Phys. Rev. Lett. 74 (1995) 4947-4950.

DOI: 10.1103/physrevlett.74.4947

Google Scholar

[37] H. Cao, R. Zhang, J.P. Yuan, C.M. Huang, Y.C. Jean, R. Suzuki, T. Ohdaira, B. Nielsen, Free-volume hole model for positronium formation in polymers: surface studies, J. Phys. Condensed Matter 10 (1998) 10429-10442.

DOI: 10.1088/0953-8984/10/46/011

Google Scholar

[38] G. Duplatre, I. Billard, Organic and inorganic chemistry of the positron and positronium, in: Y.C. Jean, P.E. Mallon, D.M. Schrader (Eds. ), Principles and Applications of Positron & Positronium Chemistry, World Scientific, New Jersey, London, Singapore, Hong Kong, 2003, pp.73-116.

DOI: 10.1142/9789812775610_0004

Google Scholar

[39] K. Hirata, Y. Kobayashi, Y. Ujihira, Effect of halogenated compounds on positronium formation in polycarbonate and polysulfone matrices, J. Chem. Soc. Faraday Trans. 93 (1997) 139-142.

DOI: 10.1039/a605619i

Google Scholar

[40] K. Okamoto, K. Tanaka, M. Katsube, O. Sueoka, Y. Ito, Positronium formation in various polyimides, Radiat. Phys. Chem. 41 (1993) 497-502.

DOI: 10.1016/0969-806x(93)90011-i

Google Scholar

[41] Y. Kobayashi, H.F.M. Mohamed, A. Ohira, Positronium formation in aromatic polymer electrolytes for fuel cells, J. Phys. Chem. B 113 (2009) 5698-5701.

DOI: 10.1021/jp901471m

Google Scholar

[42] I.K. MacKenzie, P.Z. Ghorayshi, Positron mobility in some solid insulators at room temperature, Solid State Commun. 55 (1985) 125-127.

DOI: 10.1016/0038-1098(85)90262-5

Google Scholar

[43] A.P. Mills, E.M. Gullikson, L. Pfeiffer, W.S. Rockward, Mobility of positrons in polyethylene, Phys. Rev. B 33 (1986) 7799-7802.

DOI: 10.1103/physrevb.33.7799

Google Scholar

[44] R.S. Brusa, M. Duarte Naia, D. Margoni, A. Zecca, Positron mobility in polyethylene in the 60-400 K temperature range, Appl. Phys. A 60 (1995) 447-453.

DOI: 10.1007/bf01538768

Google Scholar

[45] W. Zheng, Y. Kobayashi, K. Hirata, T. Suzuki, Mobility of positrons in gamma-irradiated polypropylene and polyethylene, Radiat. Phys. Chem. 51 (1998) 269-272.

Google Scholar

[46] Y. Kobayashi, C.L. Wang, K. Hirata, W. Zheng, C. Zhang, Effects of composition and external electric field on positronium formation in a polymer blend system, Phys. Rev. B 58 (1998) 5384-5389.

DOI: 10.1103/physrevb.58.5384

Google Scholar

[47] S.V. Stepanov, V.M. Byakov, Y. Kobayashi, Positronium formation in molecular media: The effect of the external electric field, Phys. Rev. B 72 (2005) 054205-1-054205-7.

DOI: 10.1103/physrevb.72.054205

Google Scholar

[48] C.L. Wang, K. Hirata, J. Kawahara, Y. Kobayashi, Electric-field dependence of positronium formation in liquids and polymers, Phys. Rev. B 58 (1998) 14864-14869.

DOI: 10.1103/physrevb.58.14864

Google Scholar

[49] Y. Kobayashi, W. Zheng, K. Hirata, T. Suzuki, Electric field effect on positronium formation in gamma-irradiated polypropylene and polyethylene, Radiat. Phys. Chem. 50 (1997) 589-593.

DOI: 10.1016/s0969-806x(97)00082-0

Google Scholar

[50] C.L. Wang, T. Hirade, F.H.J. Maurer, M. Eldrup, N.J. Pedersen, Free-volume distribution and positronium formation in amorphous polymers: Temperature and positron-irradiation-time dependence, J. Chem. Phys. 108 (1998) 4654-4661.

DOI: 10.1063/1.475876

Google Scholar

[51] T. Hirade, Positron annihilation in radiation chemistry, in: Y. Hatano, Y. Katsumura, A. Mozumder (Eds. ) Charged Particle and Photon Interactions with Matter Recent Advances, Application, and Interfaces, CRC Press, Boca Raton, London, New York, 2011, pp.137-167.

DOI: 10.1201/b10389-8

Google Scholar

[52] C.L. Wang, Y. Kobayashi, W. Zheng, C. Zhang, Y. Nagai, M. Hasegawa, Positronium formation in a polymer blend of polyethylene and chlorinated polyethylene, Phys. Rev. B 63 (2001) 064204-1-064204-9.

DOI: 10.1103/physrevb.63.064204

Google Scholar

[53] C.L. Wang, Y. Kobayashi, W. Zheng, C. Zhang, Positronium formation in PE/EVA polymer blends at low temperatures, Polymer 42 (2001) 2359-2364.

DOI: 10.1016/s0032-3861(00)00609-1

Google Scholar

[54] Y. Nagai, T. Nonaka, M. Hasegawa, Y. Kobayashi, C.L. Wang, W. Zheng, C. Zhang, Direct evidence of positron trapping at polar groups in a polymer-blend system, Phys. Rev. B 60 (1999) 11863-11866.

DOI: 10.1103/physrevb.60.11863

Google Scholar

[55] Positrons that do not form Ps are frequently called free" positrons. Note that the "free, positrons are not free in polar polymers.

Google Scholar

[56] K. Hirata, Y. Kobayashi, Y. Ujihira, Diffusion coefficients of positronium in amorphous polymers, J. Chem. Soc. Faraday Trans. 92 (1996) 985-988.

DOI: 10.1039/ft9969200985

Google Scholar

[57] A.H. Baugher, W.J. Kossler, K.G. Petzinger, Does quantum mechanical tunneling affect the validity of hole volume distributions obtained from positron annihilation lifetime measurements?, Macromolecules 29 (1996) 7280-7283.

DOI: 10.1021/ma960756b

Google Scholar

[58] H. Nakanishi, Y.C. Jean, E.G. Smith, T.C. Sandreczski, Positronium formation at free-volume sites in the amorphous regions of semicrystalline PEEK, J. Polymer Sci. B Polym. Phys. 27 (1989) 1419-1424.

DOI: 10.1002/polb.1989.090270704

Google Scholar

[59] S.J. Tao, Positronium annihilation in molecular substances, J. Chem. Phys. 56 (1972) 5499-5510.

Google Scholar

[60] M. Eldrup, D. Lightbody, J.N. Sherwood, The temperature dependence of positron lifetimes in some pivalic acid, Chem. Phys. 63 (1981) 51-58.

DOI: 10.1016/0301-0104(81)80307-2

Google Scholar

[61] H. Nakanishi, S.J. Wang, Y.C. Jean, Microscopic surface tension studied by positron annihilation, in: S.C. Sharma (Ed. ), International Symposium on Positron Annihilation Studies of Fluids, World Scientific, Singapore, New Jersey, London, Hong Kong, 1988, pp.292-298.

Google Scholar

[62] V.P. Shantarovich, Yu.P. Yampol'skii, I.B. Kevdina, Svobodnii obem i vremia dzizni pozitroniya v polimernikh sistemakh, Khimiya Vysokikh Energii 28 (1994) 53-59.

Google Scholar

[63] T. Goworek, K. Ciesielski, B. Jasinska, J. Wawryszczuk, Positronium states in the pores of silica gel, Chem. Phys. 230 (1998) 305-315.

DOI: 10.1016/s0301-0104(98)00068-8

Google Scholar

[64] K. Ito, H. Nakanishi, Y. Ujihira, Extension of the equation for the annihilation lifetime of ortho-positronium at a cavity larger than 1 nm in radius, J. Phys. Chem. B 103 (1999) 4555-4558.

DOI: 10.1021/jp9831841

Google Scholar

[65] D.W. Gidley, W.E. Frieze, T.L. Dull, A.F. Yee, E.T. Ryan, H.M. Ho, Positronium annihilation in mesoporous thin films, Phys. Rev. B 60 (1999) R5157-R5160.

DOI: 10.1103/physrevb.60.r5157

Google Scholar

[66] T.L. Dull, W.E. Frieze, D.W. Gidley, J.N. Sun, A.F. Yee, Determination of pore size in mesoporous thin films from the annihilation lifetime of positronium, J. Phys. Chem. B 105 (2001) 4657-4662.

DOI: 10.1021/jp004182v

Google Scholar

[67] D. Dutta, B.N. Ganguly, D. Gangopadhyay, T. Mukherjee, B. Dutta-Roy, Microstructural study of silica gel by positron annihilation, J. Phys. Chem. B 108 (2004) 8947-8952.

DOI: 10.1021/jp049763p

Google Scholar

[68] G.B. DeMaggio, W.E. Frieze, D.W. Gidley, M. Zhu, H.A. Hristov, A.F. Yee, Interface and surface effects on the glass transition in thin polystyrene, Phys. Rev. Lett. 78 (1997) 1524-1527.

DOI: 10.1103/physrevlett.78.1524

Google Scholar

[69] S. Ata, M. Muramatsu, J. Takeda, T. Ohdaira, R. Suzuki, K. Ito, Y. Kobayashi, T. Ougizawa, Free volume behavior in spincast thin film of polystyrene by energy variable positron annihilation lifetime spectroscopy, Polymer 50 (2009) 3343-3346.

DOI: 10.1016/j.polymer.2009.04.060

Google Scholar

[70] K. Tanaka, M. Katsube, K. Okamoto, H, Kita, O. Sueoka, Y. Ito, Correlation between positron annihilation and gas diffusion properties of a series of polyimides, Bull. Chem. Soc. Jpn 65 (1992) 1891-1897.

DOI: 10.1246/bcsj.65.1891

Google Scholar

[71] G. Consolati, I. Genco, M. Pegoraro, L. Zanderighi, Positron annihilation lifetime (PAL) in poly[1 -(trimethylsilyl)propine] (PTMSP): Free volume determination and time dependence of permeability, J. Polym. Sci. B Polym. Phys. 34 (1996) 357-367.

DOI: 10.1002/(sici)1099-0488(19960130)34:2<357::aid-polb17>3.0.co;2-i

Google Scholar

[72] A. Shimazu, K. Ikeda, T. Miyazaki, Y. Ito, Application of positron annihilation technique to reverse osmosis membrane materials, Radiat. Phys. Chem. 58 (2000) 555-561.

DOI: 10.1016/s0969-806x(00)00217-6

Google Scholar

[73] C. Nagel, K. Gunther-Schade, D. Fritsch, T. Strunskus, F. Faupel, Free volume and transport properties in highly selective polymer membranes, Macromolecules 35 (2002) 2071-(2077).

DOI: 10.1021/ma011028d

Google Scholar

[74] D. Dutta. A. Bhattacharyya, B.N. Ganguly, Microstructural study of aromatic polyamide membrane materials, J. Membr. Sci. 224 (2003) 127-135.

DOI: 10.1016/j.memsci.2003.08.001

Google Scholar

[75] A. Cano-Odena, P. Vandezande, K. Hendrix, R. Zaman, K. Mostafa, W. Egger, P. Sperr, J. De Baerdemaeker, I.F.J. Vankelecom, Probing the molecular level of polyimide-based solvent resistant nanofiltration membranes with positron annihilation spectroscopy, J. Phys. Chem. B 113 (2009).

DOI: 10.1021/jp9012653

Google Scholar

[76] B.W. Rowe, S.J. Pas, A.J. Hill, R. Suzuki, B.D. Freeman, D.R. Paul, A variable energy positron annihilation lifetime spectroscopy study of physical aging in thin glassy polymer films, Polymer 50 (2009) 6149-6156.

DOI: 10.1016/j.polymer.2009.10.045

Google Scholar

[77] T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Ultrapermeable, reverse-selective nanocomposite membranes, Science 296 (2002) 519-522.

DOI: 10.1126/science.1069580

Google Scholar

[78] P. Winberg, K. Desitter, C. Dotremont, S. Mullens, I.F. J Vankelecom, F.H.J. Maurer, Free volume and interstitial mesopores in silica filled poly(1-trimethylsilyl-1-propyne) nanocomposities, Macromolecules 38 (2005) 3776-3782.

DOI: 10.1021/ma047369j

Google Scholar

[79] P. Winberg, M. Eldrup, N.J. Pedersen, M.A. van Es, F.H.J. Maurer, Free volume sizes in intercalated polyamide 6/clay nanocomposites, Polymer 46 (2005) 8239-8249.

DOI: 10.1016/j.polymer.2005.06.063

Google Scholar

[80] C.L. Wang, Y. Kobayashi, H. Togashi, K. Kato, T. Hirotsu, K. Hirata, R. Suzuki, T. Ohdaira, T. Mikado, Plasma-polymerized hexamethyldisiloxane films characterized by variable-energy positron lifetime spectroscopy, J. Appl. Polym. Sci. 74 (1999).

DOI: 10.1002/(sici)1097-4628(19991205)74:10<2522::aid-app21>3.0.co;2-h

Google Scholar

[81] T. Oka, K. Ito, M. Muramatsu, T. Ohdaira, R. Suzuki, Y. Kobayashi, Porogen approach for the fabrication of plasma-polymerized nanoporous polysiloxane films, J. Phys. Chem. B 110 (2006) 20172-20176.

DOI: 10.1021/jp063013t

Google Scholar

[82] H.F.M. Mohamed, Y. Kobayashi, C.S. Kuroda, N. Takimoto, A. Ohira, Free volume, oxygen permeability, and uniaxial compression storage modulus of hydrated biphenol-based sulfonated poly(arylene ether sulfone), J. Membr. Sci. 360 (2010) 84-89.

DOI: 10.1016/j.memsci.2010.05.003

Google Scholar

[83] Z. Chen, K. Ito, H. Yanagishita, N. Oshima, R. Suzuki, Y. Kobayashi, Correlation study between free-volume holes and molecular separations of composite membranes for reverse osmosis processes by means of variable-energy positron annihilation techniques, J. Phys. Chem. C 115 (2011).

DOI: 10.1021/jp203888m

Google Scholar

[84] R.K. Bharadwaj, Effect of H2O on the diffusion of N2 in PMMA: A molecular dynamics simulation study, Macromolecules 35 (2002) 5334-5336.

Google Scholar

[85] B. O'Rourke et al, this volume.

Google Scholar

[86] A. Alba Garcia, S.M. Pimblott, H. Schut. A. van Veen, L.D.A. Siebbeles, Positronium formation dynamics in radiolytic tracks: A computer simulation study, J. Phys. Chem. B 106 (2002) 1124-1130.

DOI: 10.1021/jp012611z

Google Scholar

[87] A. Alba Garcia, L.D.A. Siebbeles, H. Schut, A. van Veen, S.M. Pimblott, Positronium formation in polyethylene: A computer simulation study, Radiat. Phys. Chem. 68 (2003) 623-625.

DOI: 10.1021/jp012611z

Google Scholar

[88] K. Sato, D. Shanai, Y. Hotani, T. Ougizawa, K. Ito, K. Hirata, Y. Kobayashi, Positronium formed by recombination of positron-electron pairs in polymers, Phys. Rev. Lett. 96 (2006) 228302-1-228302-4.

DOI: 10.1103/physrevlett.96.228302

Google Scholar

[89] D. Racko, S. Capponi, F. Alvarez, J. Colmenero, The free volume of poly(vinyl methylether) as computed in a wide temperature range and at length scales up to the nanoregion, J. Chem. Phys. 134 (2011) 044512-1-044512-14.

DOI: 10.1063/1.3525380

Google Scholar

[90] Y. Kobayashi, K. Haraya, K. Kamiya, S. Hattori, Correlation between the ortho-positronium pick-off annihilation lifetime and the free volume in molecular liquids and polymers, Bull. Chem. Soc. Japan 65 (1992) 160-163.

DOI: 10.1246/bcsj.65.160

Google Scholar