Effect of Nonlinear Thermal Radiation on MHD Boundary Layer Flow and Melting Heat Transfer of Micro-Polar Fluid over a Stretching Surface with Fluid Particles Suspension

Article Preview

Abstract:

A comprehensive numerical study is conducted to investigate effect of nonlinear thermal radiation on MHD boundary layer flow and melting heat transfer of micro polar fluid over a stretching surface with fluid particles suspension. Using suitable transformations, the governing equations of the problem are transformed in to a set of coupled nonlinear ordinary differential equations and then they are solved numerically using the Runge–Kutta–Fehlberg-45 method with the help of shooting technique. Authentication of the current method is proved by having compared with established results with limiting solution. The impact of the various stimulating parameters on the flow and heat transfer is analyzed and deliberated through plotted graphs in detail. We found that the velocity, angular velocity and temperature fields increase with an increase in the melting process of the stretching sheet. Also it is visualize that the shear stress factor is lower for micro polar fluids as compared to Newtonian fluids, which may be beneficial in flow and heat control of polymeric processing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-136

Citation:

Online since:

September 2017

Export:

Price:

* - Corresponding Author

[1] O.D. Makinde, I. L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution, International Journal of Thermal Sciences, 109(2016).

DOI: 10.1016/j.ijthermalsci.2016.06.003

Google Scholar

[2] R. Cortell, Fluid flow and radiative nonlinear heat transfer over a stretching sheet, J. of King Saud University-Sci., 26 (2014) 161-167.

DOI: 10.1016/j.jksus.2013.08.004

Google Scholar

[3] M. Mustafa, A. Mushtaq, T. Hayat, A. Alsaedi, Numerical study of the non-linear radiation heat transfer problem for the flow of a second-grade fluid, J Bulgarian Chem. Commu., 47(2), (2015) 725–732.

DOI: 10.1108/hff-05-2014-0147

Google Scholar

[4] A. Muhammad, O. D. Makinde, Thermodynamics analysis of unsteady MHD mixed convection with slip and thermal radiation over a permeable surface, Defect and Diffusion Forum, 374 (2017) 29-46.

DOI: 10.4028/www.scientific.net/ddf.374.29

Google Scholar

[5] B.C. Prasannakumara, B.J. Gireesha, R.S.S. Gorla, M.R. Krishnamurthy, Effects of chemical reaction and nonlinear thermal radiation on Williamson nanofluid slip flow over a stretching sheet embedded in a porous medium, J. Aerospace Eng., (2016).

DOI: 10.1061/(asce)as.1943-5525.0000578

Google Scholar

[6] L. Roberts, On the melting of a semi-infinite body of ice placed in a hot stream of air, J of Fluid Mechanics, 4 (1958) 505-528.

DOI: 10.1017/s002211205800063x

Google Scholar

[7] C. Tien, Y.C. Yen, The effect of melting on forced convection heat transfer, J Appl. Meteorol, 4 (1965) 523–527.

DOI: 10.1175/1520-0450(1965)004<0523:teomof>2.0.co;2

Google Scholar

[8] R.S.R. Gorla, M.A. Mansour, I. A. Hussanien, A.Y. Bakier, Mixed convection effect on melting from a vertical plate, Transport Porous Med., 36 (1999) 245–254.

Google Scholar

[9] N. Bachock, A. Ishak, I. Pop, Melting heat transfer in boundary layer stagnation point flow towards a stretching/shrinking sheet, Phys. Lett. A., 374 (2010) 4075–4079.

DOI: 10.1016/j.physleta.2010.08.032

Google Scholar

[10] B.C. Prasannakumara, B.J. Gireesha, P.T. Manjunatha. Melting phenomenon in MHD stagnation point flow of dusty fluid over a stretching sheet in the presence of thermal radiation and non-uniform heat source/sink. Int. J. for Compu. Methods in Eng. Sci. and Mech., 16 (2015).

DOI: 10.1080/15502287.2015.1047056

Google Scholar

[11] A.C. Eringen, Theory of micropolar fluids. J. Math. Mech. 16 (1966) 150-178.

Google Scholar

[12] M.W. Heruska, L.T. Watson, K.K. Sankara, Micropolar flow past a porous stretching sheet, Comp. Fluids, 14 (1986) 117–29.

DOI: 10.1016/0045-7930(86)90004-6

Google Scholar

[13] I.A. Hassanien, R.S.R. Gorla, Heat transfer to a micropolar fluid from a non-isothermal stretching sheet with suction and blowing, Acta Mechanica, 84 (1990) 191-199.

DOI: 10.1007/bf01176097

Google Scholar

[14] R. Nazar, N. Amin, D. Filip, I. Pop, Stagnation point flow of a micropolar fluid towards a stretching sheet, Int. J. of Non-Linear Mechanics, 39(7) (2004) 1227–1235.

DOI: 10.1016/j.ijnonlinmec.2003.08.007

Google Scholar

[15] K. Govardhan, G. Nagaraj, K. Kaladhar, M. Balasiddulu, MHD and radiation effects on mixed convection unsteady flow of micropolar fluid over a stretching sheet, Procedia Computer Science, 57 (2015) 65–76.

DOI: 10.1016/j.procs.2015.07.366

Google Scholar

[16] P.G. Saffman, On the stability of laminar flow of a dusty gas, J. of Fluid Mechanics, 13 (1962) 120-128.

DOI: 10.1017/s0022112062000555

Google Scholar

[17] N. Datta, S.K. Mishra, Boundary layer flow of a dusty fluid over a semi-infinite flat plate, Acta Mech., 42 (1982) 71–83.

DOI: 10.1007/bf01176514

Google Scholar

[18] K. Vajravelu, J. Nayfeh, Hydromagnetic flow of a dusty fluid over a stretching sheet, Int. J. of Nonlinear Mechanics, 27 (1992) 937-945.

DOI: 10.1016/0020-7462(92)90046-a

Google Scholar

[19] G. Palani, P. Ganesan, Heat transfer effects on dusty gas flow past a semi-infinite inclined plate, ForschIngenieurwes (Springer), 71 (2007) 223-230.

DOI: 10.1007/s10010-007-0061-9

Google Scholar

[20] O.D. Makinde, T. Chinyoka, MHD transient flows and heat transfer of dusty fluid in a channel with variable physical properties and Navies slip condition. Comp. Math. Appl., 60 (2010)660-669.

DOI: 10.1016/j.camwa.2010.05.014

Google Scholar

[21] B.J. Gireesha, S. Manjunatha, C.S. Bagewadi, Unsteady hydromagnetic boundary layer flow and heat transfer of dusty fluid over a stretching sheet, Afrika Matematika, 23(2) (2012) 229–241.

DOI: 10.1007/s13370-011-0031-0

Google Scholar

[22] S. Manjunatha, B.J. Gireesha, Effects of variable viscosity and thermal conductivity on MHD flow and heat transfer of a dusty fluid, Ain Shams Engineering Journal, 7(1), (2016) 505–515.

DOI: 10.1016/j.asej.2015.01.006

Google Scholar

[23] P. M. Krishna, V. Sugunamma, N. Sandeep, Magnetic field and chemical reaction effects on convective flow of dusty viscous fluid, Comm. in Appl. Sci., 1 (2013) 161-187.

Google Scholar

[24] M. Fathizadeh, M. Madani, Y. Khan, N. Faraz, A. Yildirim, S. Tutkun, An effective modification of the homotopy perturbation method for MHD viscous flow over a stretching sheet. J King Saud University, 25(2) (2013) 107–113.

DOI: 10.1016/j.jksus.2011.08.003

Google Scholar

[25] N.S. Akbar, S. Nadeem, R. Haq, Z. H. Khan, Numerical solutions of Magneto hydrodynamic boundary layer flow of tangent hyperbolic fluid flow towards a stretching sheet with magnetic field. Indian J. Phys., 87(11) (2013) 1121–1124.

DOI: 10.1007/s12648-013-0339-8

Google Scholar