MHD Nanofluid Flow Past a Rotating Disk with Thermal Radiation in the Presence of Aluminum and Titanium Alloy Nanoparticles

Article Preview

Abstract:

The effects of thermal and exponential space dependent heat sources (THS and ESHS) on magneto-nanoliquid flow across a rotating disk with uniform stretching rate along radial direction are scrutinized in this communication. H2O based nanoliquids containing aluminium (AA 7075) and titanium (Ti6Al4V) alloy nanoparticles are considered. The AA7075 is made up of 90% Al, 5-6% Zn, 2-3% Mg, 1-2% Cu with additives such as Fe, Mn and Si etc. The flow is driven due to rotating disk with uniform stretching of the disk. Impacts of Joule and viscous heating are also deployed. The multidegree ordinary differential equations are formed via Von Karman transformations. The obtained non-linear BVP is solved by Runge-Kutta-Fehlberg based shooting approach (RKFS). Graphical illustrations depict the impacts of influential parameters on flow fields. The skin friction and Nusselt number are also calculated. Results pointed out that the thermal boundary layer growth stabilizes due to the influence of ESHS aspect. Velocities of nanofluid are superior than that of nanoliquid. Furthermore, the thermal performance of base liquid is outstanding when we added titanium alloy nanoparticles in comparison with aluminium alloy nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-79

Citation:

Online since:

May 2018

Export:

Price:

* - Corresponding Author

[1] S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA. ASME, FED 231/MD, 66 (1995) 99-105.

Google Scholar

[2] S. Khalili, H. Tamim, A. Khalili, M. M. Rashidi, Unsteady convective heat and mass transfer in pseudoplastic nanofluid over a stretching wall, Advanced Powder Technology, 26(5) (2015) 1319-1326.

DOI: 10.1016/j.apt.2015.07.006

Google Scholar

[3] M. A. Sheremet, I. Pop, N. C. Roşca, Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno's mathematical model, Journal of the Taiwan Institute of Chemical Engineers, 61 (2016).

DOI: 10.1016/j.jtice.2015.12.015

Google Scholar

[4] M. Sheikholeslami, M. M. Rashidi, T. Hayat, D. D. Ganji, Free convection of magnetic nanofluid considering MFD viscosity effect. Journal of Molecular Liquids, 218, (2016) 393-399.

DOI: 10.1016/j.molliq.2016.02.093

Google Scholar

[5] O. D. Makinde, W.A. Khan, J.R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer, International Journal of Heat and Mass Transfer, 93 (2016) 595–604.

DOI: 10.1016/j.ijheatmasstransfer.2015.10.050

Google Scholar

[6] A. Malvandi, D. D. Ganji, I. Pop, Laminar filmwise condensation of nanofluids over a vertical plate considering nanoparticles migration. Applied Thermal Engineering, 100 (2016) 979-986.

DOI: 10.1016/j.applthermaleng.2016.02.061

Google Scholar

[7] W.A. Khan, O.D. Makinde, Z.H. Khan, MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip, International Journal of Heat and Mass Transfer 74 (2014) 285–291.

DOI: 10.1016/j.ijheatmasstransfer.2014.03.026

Google Scholar

[8] T. Hayat, Z. Hussain, T. Muhammad, A. Alsaedi, Effects of homogeneous and heterogeneous reactions in flow of nanofluids over a nonlinear stretching surface with variable surface thickness, Journal of Molecular Liquids, 221 (2016) 1121-1127.

DOI: 10.1016/j.molliq.2016.06.083

Google Scholar

[9] A. Malvandi, S. Heysiattalab, D. D. Ganji, Thermophoresis and Brownian motion effects on heat transfer enhancement at film boiling of nanofluids over a vertical cylinder. Journal of Molecular Liquids, 216 (2016) 503-509.

DOI: 10.1016/j.molliq.2016.01.030

Google Scholar

[10] X. Si, H. Li, L. Zheng, Y. Shen, X. Zhang, A mixed convection flow and heat transfer of pseudo-plastic power law nanofluids past a stretching vertical plate. International Journal of Heat and Mass Transfer, 105 (2017) 350-358.

DOI: 10.1016/j.ijheatmasstransfer.2016.09.106

Google Scholar

[11] O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. Journal of Molecular Liquids, 219 (2016) 624-630.

DOI: 10.1016/j.molliq.2016.03.078

Google Scholar

[12] W. Ibrahim, O. D. Makinde, Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition. Journal of Aerospace Engineering, 29(2) (2016), Article# 04015037.

DOI: 10.1061/(asce)as.1943-5525.0000529

Google Scholar

[13] I. Ullah, S. Shafie, O. D. Makinde, I. Khan: Unsteady MHD Falkner-Skan flow of Casson nanofluid with generative/destructive chemical reaction, Chemical Engineering Science, Vol. 172, 694–706, (2017).

DOI: 10.1016/j.ces.2017.07.011

Google Scholar

[14] B. Mahanthesh, B. J. Gireesha, R. S. Gorla, Mixed convection squeezing three-dimensional flow in a rotating channel filled with nanofluid. International Journal of Numerical Methods for Heat & Fluid Flow, 26(5) (2016) 1460-1485.

DOI: 10.1108/hff-03-2015-0087

Google Scholar

[15] B. Mahanthesh, B. J. Gireesha, R. S. & Gorla, Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate. Alexandria Engineering Journal, 55(1) (2016) 569-581.

DOI: 10.1016/j.aej.2016.01.022

Google Scholar

[16] B. J. Gireesha, M. Archana, B.C. Prasannakumara, R. Gorla, O. D. Makinde, MHD three dimensional double diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface, International Journal of Numerical Methods for Heat and Fluid Flow, 27 (12) (2017).

DOI: 10.1108/hff-01-2017-0022

Google Scholar

[17] O. D. Makinde, N. Sandeep, I.L. Animasaun, M. S. Tshehla, Numerical exploration of Cattaneo-Christov heat flux and mass transfer in magnetohydrodynamic flow over various geometries, Defect and Diffusion Forum, 374 (2017) 67-82.

DOI: 10.4028/www.scientific.net/ddf.374.67

Google Scholar

[18] P. B. Sampath Kumar, B. J. Gireesha, B. Mahanthesh, R. S. Gorla, Radiative nonlinear 3D flow of Ferrofluid with Joule heating, convective condition and Coriolis force, Thermal Science and Engineering Progress, 3 (2017) 88-94.

DOI: 10.1016/j.tsep.2017.06.006

Google Scholar

[19] A. T. Olatundun, O. D. Makinde, Analysis of Blasius flow of hybrid nanofluids over a convectively heated surface. Defect and Diffusion Forum, 377 (2017) 29-41.

DOI: 10.4028/www.scientific.net/ddf.377.29

Google Scholar

[20] R. Kumar, S. Shilpa, M. Sheikholeslami, S. A. Shehzad, Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations, Journal of Colloid and Interface Science, 505(2017).

DOI: 10.1016/j.jcis.2017.05.083

Google Scholar

[21] P. Parayanthal, F. H. Pollak, Raman scattering in alloy semiconductors: spatial correlation model, Physical review letters, 52(20) (1984) 1822-1825.

DOI: 10.1103/physrevlett.52.1822

Google Scholar

[22] M. Žitňanský, L. Čaplovič, Effect of the thermomechanical treatment on the structure of titanium alloy Ti6Al4V, Journal of Materials Processing Technology, 157(2004) 643-649.

DOI: 10.1016/j.jmatprotec.2004.07.151

Google Scholar

[23] M. Balazic, J. Kopac, M. J. Jackson, W. Ahmed, Titanium and titanium alloy applications in medicine, International Journal of Nano and Biomaterials, 1(1) (2007) 3-34.

DOI: 10.1504/ijnbm.2007.016517

Google Scholar

[24] N. Sandeep, R. P. Sharma, M. Ferdows, Enhanced heat transfer in unsteady magnetohydrodynamic nanofluid flow embedded with aluminum alloy nanoparticles, Journal of Molecular Liquids, 234(2007) 437-443.

DOI: 10.1016/j.molliq.2017.03.051

Google Scholar

[25] N. Bachok, A. Ishak, I. Pop, Flow and heat transfer over a rotating porous disk in a nanofluid, Physica B: Condensed Matter, 406(9) (2011) 1767-1772.

DOI: 10.1016/j.physb.2011.02.024

Google Scholar

[26] M. Turkyilmazoglu, Nanofluid flow and heat transfer due to a rotating disk, Computers & Fluids, 94, (2014)139-146.

DOI: 10.1016/j.compfluid.2014.02.009

Google Scholar

[27] C. Yin, L. Zheng, C. Zhang, X. Zhang, Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction, Propulsion and Power Research, 6(1) (2017) 25-30.

DOI: 10.1016/j.jppr.2017.01.004

Google Scholar

[28] A.K. Kempannagari, V. R. R. Janke, S. Vangala, N. Sandeep, Impact of frictional heating on MHD radiative ferrofluid past a convective shrinking surface, Defect and Diffusion Forum, 378 (2017) 157-174.

DOI: 10.4028/www.scientific.net/ddf.378.157

Google Scholar

[29] J.V. Ramana Reddy, V. Sugunamma, N. Sandeep. Impact of nonlinear radiation on 3D magnetohydrodynamic flow of methanol and kerosene based ferrofluids with temperature dependent viscosity. Journal of Molecular Liquids, 236 (2017) 93-100.

DOI: 10.1016/j.molliq.2017.04.011

Google Scholar