Entropy Analysis of MHD Variable Thermal Conductivity Fluid Flow Past a Convectively Heated Stretching Cylinder

Article Preview

Abstract:

The present study is related to entropy analysis during magnetohydrodynamic (MHD) boundary layer flow of a viscous incompressible electrically conducting fluid past a stretching cylinder with convective heating in the presence of a transverse magnetic field. The governing boundary layer equations in cylindrical form are simplified by means of appropriate similarity transformations. Numerical solutions with high precision are obtained using Runge-Kutta fourth order scheme with eminent shooting technique. The effects of the pertinent parameters on the fluid velocity, temperature, entropy generation number, Bejan number as well as the shear stress at the surface of the cylinder are discussed graphically and quantitatively. It is examined that due to the presence of magnetic field, entropy generation can be controlled and reduced. Bejan number is plotted to present a comparative analysis of entropy generation due to heat transfer and fluid friction. It is found that Bejan number is an increasing function of Biot number.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

244-259

Citation:

Online since:

September 2018

Export:

Price:

* - Corresponding Author

[1] L. J. Crane, Boundary layer flow due to a stretching cylinder, J. Appl. Math. Phys. 26(5) (1975) 619-622.

Google Scholar

[2] H.T. Lin, Y.P. Shih, Laminar boundary layer heat transfer along static and moving cylinders, J. Chinese Inst. Eng. 3 (1980) 73-79.

DOI: 10.1080/02533839.1980.9676650

Google Scholar

[3] L.J. Grubka, K. M. Bobba, Heat transfer characteristics of a continuous stretching surface with variable temperature, J. Heat Mass Transf. 107 (1985) 248-250.

DOI: 10.1115/1.3247387

Google Scholar

[4] C.Y. Wang, Fluid flow due to a stretching cylinder, Phys. Fluids 31 (1988) 466-8.

Google Scholar

[5] M. E. Ali, Heat transfer characteristics of a continuous stretching surface, Heat Mass Transf. 29 (1994) 227-234.

Google Scholar

[6] A. Ishak, R. Nazar, I. Pop, Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder, Energy Convers Manage 49 (2008) 3265-9.

DOI: 10.1016/j.enconman.2007.11.013

Google Scholar

[7] A. Ishak, R. Nazar, Laminar boundary layer flow along a stretching cylinder, Eur. J. Sci. Res. 36(1) (2009) 22-9.

Google Scholar

[8] B. Sahoo, Effects of slip, viscous dissipation and Joule heating on the MHD flow and heat transfer of a second grade fluid past a radially stretching sheet. Appl. Math. Mech.-Engl. Ed. 31 (2010) 159-173.

DOI: 10.1007/s10483-010-0204-7

Google Scholar

[9] A.A. Joneidi, G. Domairry, M. Babaelahi, M. Mozaffari, Analytical treatment on magnetohydrodynamic (MHD) flow and heat transfer due to a stretching hollow cylinder, Int. J. Numer. Meth. Fluids 63(5) (2010) 548-563.

DOI: 10.1002/fld.2087

Google Scholar

[10] S. Mukhopadhyay, Chemically reactive solute transfer in a boundary layer slip flow along a stretching cylinder, Front Chem. Sci. Eng. 5(3) (2011) 385-91.

DOI: 10.1007/s11705-011-1101-4

Google Scholar

[11] S. Munawar, A. Mehmood, A. Ali, Time-dependent flow and heat transfer over a stretching cylinder, Chin. J. Phys. 50(5) (2012) 828-848.

Google Scholar

[12] S. Mukhopadhyay, MHD boundary layer slip flow along a stretching cylinder, Ain Shams Eng. J. 4 (2013) 317-324.

DOI: 10.1016/j.asej.2012.07.003

Google Scholar

[13] N. Najib, N. Bachok, N.M. Arifin, A. Ishak, Stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder, Sci. Reports 4 (2014) 4178.

DOI: 10.1038/srep04178

Google Scholar

[14] H. F. Öztop, K. Al-Salem, A review on entropy generation in natural and mixed convection heat transfer for energy systems, Renew. Sust. Energy Rev. 16 (1) (2012) 911-920.

DOI: 10.1016/j.rser.2011.09.012

Google Scholar

[15] A. Bejan, Second law analysis in heat transfer, Energy Int. J. 5(1980) 721-732.

Google Scholar

[16] A. Bejan, Entropy Generation Through Heat and Fluid Flow, Wiley, Canada, (1994).

Google Scholar

[17] S. Adboud, S. Saouli, Entropy analysis for viscoelastic magneto hydrodynamic flow over a stretching surface, Int. J. Non Linear Mech. 45 (5) (2010) 482-489.

DOI: 10.1016/j.ijnonlinmec.2010.01.007

Google Scholar

[18] O.D. Makinde, Second law analysis for variable viscosity hydromagnetic boundary layer flow with thermal radiation and Newtonian heating, Entropy 13 (2011) 1446-1464.

DOI: 10.3390/e13081446

Google Scholar

[19] M.S. Tshehla, O.D. Makinde, Analysis of entropy generation in a variable viscosity fluid flow between two concentric pipes with a convective cooling at the surface, Int .J. Phys. Sci. 6 (2011) 6053-6060.

Google Scholar

[20] O. D. Makinde, Entropy analysis for MHD boundary layer flow and heat transfer over a flat plate with a convective surface boundary condition, Int. J. Exergy 10 (2) (2012) 142 - 154.

DOI: 10.1504/ijex.2012.045862

Google Scholar

[21] T. Chinyoka, O. D. Makinde, On transient flow of a reactive variable viscosity third-grade fluid through a cylindrical pipe with convective cooling, Meccanica 47 (2012) 667 - 685.

DOI: 10.1007/s11012-011-9476-3

Google Scholar

[22] S. Das, R. N. Jana, O. D. Makinde: MHD flow of Cu-Al2O3/Water hybrid nanofluid in porous channel: Analysis of entropy generation, Defect and Diffusion Forum, 377 (2017) 42-61.

DOI: 10.4028/www.scientific.net/ddf.377.42

Google Scholar

[23] A.S. Butt, A. Ali, Effects of magnetic field on entropy generation in flow and heat transfer due to a radially stretching surface, Chin. Phys. Lett. 30(2) (2013) 024701.

DOI: 10.1088/0256-307x/30/2/024701

Google Scholar

[24] M.I. Afridi, M. Qasim, O. D. Makinde, Second law analysis of boundary layer flow with variable fluid properties, ASME - Journal of Heat Transfer, 139(10) (2017) Article# 104505.

DOI: 10.1115/1.4036645

Google Scholar

[25] A.S. Butt, A. Ali, A computational study of entropy generation in magnetohydrodynamic flow and heat transfer over an unsteady stretching permeable sheet, Eur. Phys. J. Plus 129(3) (2014) 1-13.

DOI: 10.1140/epjp/i2014-14013-7

Google Scholar

[26] M. H. Mkwizu, O. D. Makinde, Y. Nkansah-Gyekye, Numerical investigation into entropy generation in a transient generalized Couette flow of nanofluids with convective cooling, Sadhana - Academy Proceedings in Engineering Science, 40(7) (2015).

DOI: 10.1007/s12046-015-0432-0

Google Scholar

[27] A.S. Butt, A. Ali, Entropy analysis of magnetohydrodynamic flow and heat transfer due to a stretching cylinder, J. Taiwan Inst. Chem. Eng. 45 (2014) 780-786.

DOI: 10.1016/j.jtice.2013.08.018

Google Scholar

[28] S.O. Adesanya, O.D. Makinde, Irreversibility analysis in a couple stress film flow along an inclined heated plate with adiabatic free surface, Phys. A 432 (2015) 222-229.

DOI: 10.1016/j.physa.2015.02.062

Google Scholar

[29] S. Das, S. Chakraborty, R. N. Jana, O. D. Makinde, Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition, Appl. Math. Mech. 36 (12) (2015) 1593-1610.

DOI: 10.1007/s10483-015-2003-6

Google Scholar

[30] A. U. Rehman, R. Mehmood, S. Nadeem, Entropy analysis of radioactive rotating nanofluid with thermal slip, Appl. Thermal Eng. 112 (2017) 832-840.

DOI: 10.1016/j.applthermaleng.2016.10.150

Google Scholar

[31] K. Vajravelu, K. V. Prasad, C.-O. Ng, Unsteady convective boundary layer flow of a viscous fluid at a vertical surface with variable fluid properties, Nonlinear Analysis: Real World Appl. 14 (2013) 455-464.

DOI: 10.1016/j.nonrwa.2012.07.008

Google Scholar

[32] P.B. Bailey, L.F. Shampine, P. E. Waltman, Nonlinear two point boundary value problems, Academic Press, New York, (1968).

Google Scholar

[33] L. C. Woods, Thermodynamics of Fluid Systems, Oxford University Press, Oxford, UK, (1975).

Google Scholar

[34] O.D. Makinde, Entropy analysis for MHD boundary layer flow and heat transfer over a flat plate with a convective surface boundary condition, International Journal of Exergy 10 (2) (2012) 142-154.

DOI: 10.1504/ijex.2012.045862

Google Scholar

[35] O. D. Makinde, E. Osalusi, Entropy generation in a liquid film falling along an inclined porous heated plate, Mechanics Research Communications 33 (5), (2006) 692-698.

DOI: 10.1016/j.mechrescom.2005.06.010

Google Scholar

[36] O. D. Makinde, Entropy-generation analysis for variable-viscosity channel flow with non-uniform wall temperature, Applied Energy 85 (5) (2008) 384-393, (2008).

DOI: 10.1016/j.apenergy.2007.07.008

Google Scholar