Effect of Surface Radiation on Free Convection in Vertical Cylinders Partially Annular

Article Preview

Abstract:

The coupled of free convection with surface radiation in an annular region of two concentric vertical cylinders filled with air has been numerically investigated. The steady-state continuity, Navier–Stokes and energy equations were carried out by the finite volume method, and the Discrete Ordinates Method (DOM) was used to solve the radiative heat transfer equation (RTE). The computations have been performed for 103 ≤Ra≤ 106, with the emissivity coefficient of all the walls varying between 0 and 1. The influence of the both, Rayleigh numbers and emissivity coefficient of the wall for fixed height ratio X=0.5 on natural convection and radiation heat transfer in enclosure have been solved. The result shows that surface radiation significantly altered the temperature distribution and the flow patterns, especially at higher Rayleigh numbers. The average Nusselt number has also been discussed for different emissivity through the enclosure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

36-49

Citation:

Online since:

November 2018

Export:

Price:

[1] A. Yücel, S. Acharya, M. Williams. Natural convection and radiation in a square enclosure, Numer. Heat Transf., Part A 15 (1989) 261-278.

DOI: 10.1080/10407788908944688

Google Scholar

[2] G. Colomer, R. Cònsul, A. Oliva. Coupled radiation and natural convection: different approaches of the SLW model for a non-gray gas mixture, J. Quant. Spectrosc. Radiat. Transf. 107 (2007) 30-46.

DOI: 10.1016/j.jqsrt.2006.12.011

Google Scholar

[3] V.P. Solovjov, B.W. Webb. SLW modeling of radiative transfer in multicomponent gas mixtures, J. Quant. Spectrosc. Radiat. Transf. 65 (2000) 655-672.

DOI: 10.1016/s0022-4073(99)00133-8

Google Scholar

[4] D.A. Kontogeorgos, E.P. Keramida, M.A. Founti. Assessment of simplified thermal radiation models for engineering calculations in natural gas-fired furnace, Int. J. Heat Mass Transf. 50 (2007) 5260-5268.

DOI: 10.1016/j.ijheatmasstransfer.2007.06.011

Google Scholar

[5] B. Dubroca, M. Seaïd, I. Teleaga, A consistent approach for the coupling of radiation and hydrodynamics at low Mach number, J. Comput. Phys. 225 (2007) 1039-1065.

DOI: 10.1016/j.jcp.2007.01.011

Google Scholar

[6] A. Mezrhab, D. Lemonnier, S. Meftah, A. Benbrik, Numerical study of double diffusion convection coupled to radiation in a square cavity filled with a participating grey gas, J. Phys. D: Appl. Phys. 41 (2008) 1-16.

DOI: 10.1088/0022-3727/41/19/195501

Google Scholar

[7] C.Y. Han. Hydromagnetic free convection of a radiating fluid, Int. J. Heat Mass Transf. 52 (2009) 5895-5908.

DOI: 10.1016/j.ijheatmasstransfer.2009.08.010

Google Scholar

[8] L.C. Chang, K.T. Yang, J.R. Lloyd. Radiation-natural convection interactions in two-dimensional complex enclosures, J. Heat Transf. 105 (1983) 89-95.

DOI: 10.1115/1.3245564

Google Scholar

[9] Chong LC, Yang KT, Lloyd JR. Radiation–natural convection interactions in two-dimensional complex enclosures. ASME J Heat Transfer 105(1) (1983) 89–95.

DOI: 10.1115/1.3245564

Google Scholar

[10] Siegel R, Howell JR. Thermal radiation heat transfer, 2nd edn. Mc Graw-Hill, Hemisphere, New York, (1981).

Google Scholar

[11] Modest MF. Radiative heat transfer, 2nd edn. Academic, California, (2003).

Google Scholar

[12] Lari K, Baneshi M, Nassab SAG, Komiya A, Maruyama S. Combined heat transfer of radiation and natural convection in a square cavity containing participating gases, Int J Heat Mass Transf 54(50) (2011) 87-99.

DOI: 10.1016/j.ijheatmasstransfer.2011.07.026

Google Scholar

[13] Webb BW, Viskanta R. Analysis of radiation-induced natural convection in a rectangular enclosure, J Thermophys Heat Transf 1 (2) (1987) 146–153.

Google Scholar

[14] Balaji C, Venkateshan SP. Interaction of surface radiation with free convection in a square cavity. Int J Heat Fluid Flow 14(3) (1993) 260–267.

DOI: 10.1016/0142-727x(93)90057-t

Google Scholar

[15] Balaji C, Venkateshan SP, Correlations for free convection and surface radiation in a square cavity, Int J Heat Fluid Flow 15(3) (1994) 249–251.

DOI: 10.1016/0142-727x(94)90046-9

Google Scholar

[16] Akiyama M, Chong QP. Numerical analysis of natural convection with surface radiation in a square enclosure, Num Heat Transf A 31 (1997) 419–433.

DOI: 10.1080/10407789708913899

Google Scholar

[17] Colomer G, Costa M, Consul R, Oliva A. Three dimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method, Int J Heat Mass Transf 47 (2004) 257–269.

DOI: 10.1016/s0017-9310(03)00387-9

Google Scholar

[18] Wang Y, Meng X, Yang X, Liu J, Influence of convection and radiation on the thermal environment in an industrial building with buoyancy-driven natural ventilation, Energy Build 75 ( 2014) 394-401.

DOI: 10.1016/j.enbuild.2014.02.031

Google Scholar

[19] Martyushev SG, Sheremet MA. Conjugate natural convection combined with surface thermal radiation in an air filled cavity with internal heat source, Int J Therm Sci 76 (2014) 51-67.

DOI: 10.1016/j.ijthermalsci.2013.08.012

Google Scholar

[20] Martyushev SG, Sheremet MA, Conjugate natural convection combined with surface thermal radiation in a three-dimensional enclosure with a heat source, Int J Heat Mass Transf 73 (2014) 340-353.

DOI: 10.1016/j.ijheatmasstransfer.2014.02.009

Google Scholar

[21] P.W. Shipp, M. Shoukri, and M.B. Carver, Double-diffusive natural convection in a closed annulus, Numerical Heat Transfer, Part A, Vol.24, 1993, pp.339-356.

DOI: 10.1080/10407789308902625

Google Scholar

[22] M. A. Medebber and N. Retiel. Numerical Study of Double Diffusive Convection within the Annular Region of Two Concentric Vertical Cylinders, Defect and Diffusion Forum, Vol. 374 (2017) 1-17.

DOI: 10.4028/www.scientific.net/ddf.374.1

Google Scholar

[23] M. Sankar, S. Kiran, G.K. Ramesh, O.D. Makinde. Natural Convection in a Non-Uniformly Heated Vertical Annular Cavity, Defect and Diffusion Forum, Vol. 377 (2017) 189-199.

DOI: 10.4028/www.scientific.net/ddf.377.189

Google Scholar

[24] M.Y. Kim, S.W. Baek. Modeling of radiative heat transfer in an axisymmetric cylindrical enclosure with participating medium, Journal of Quantitative Spectroscopy & Radiative Transfer 90 (2005) 377–388.

DOI: 10.1016/j.jqsrt.2004.04.009

Google Scholar

[25] Czarnota T, Wagnera C. Turbulent convection and thermal radiation in a cuboidal Rayleigh Benard cell with conductive plates, Int J Heat Fluid Flow;57 (2016) 150-72.

DOI: 10.1016/j.ijheatfluidflow.2015.10.006

Google Scholar

[26] Dua, S. S. and Cheng, P. Multi-Dimensional Radiative Transfer in Non-isothermal Cylindrical Media with Non-isothermal Bounding Walls, Int. J. Heat Mass Transfer, Vol. 18, (1975) 245-259.

DOI: 10.1016/0017-9310(75)90157-x

Google Scholar

[27] G.De Vahl Davis, R.W. Thomas. Natural convection between concentric vertical cylinders, High Speed Computing in Fluid Dynamics, Physics of Fluids, 1969, Supplement II, pp.198-207.

DOI: 10.1063/1.1692437

Google Scholar