A Semi-Analytical Approach to Time Dependent Squeezing Flow of Cu and Ag Water-Based Nanofluids

Article Preview

Abstract:

Study reveals the axisymmetric squeezing flow of nanofluids through two parallel plates. Both Copper (Cu) and Silver (Ag) nanoparticles along with water treated as base fluid have been taken into consideration. Viscous dissipation effect and velocity slip both enhance the present study. The non-dimensional form of governing nonlinear ODEs is obtained with the suitable choice of similarity transformation. The complex ODEs are solved analytically imposing Adomain Decomposition Method (ADM). The influence of emerging parameters such as nanoparticle volume fraction, unsteadiness parameter, Eckert number, etc. have been described by visualizing graphically and the tabular values represent the unknown coefficient and computation is made for various values of physical parameters. The present result is compatible with the earlier which confirms the accuracy of the solution procedure. It reveals that point of inflection is marked in the velocity profiles of both Ag and Cu water nanofluids for the effects of various physical parameters. Squeezing number play a vital role in the velocity profile and it is observed that near the lower plate Ag nanoparticle dominates over Cu nanoparticles and further, after the middle of the channel the effect is reversed. 2010 Mathematics Subject Classification: 76D05, 76D10, 76M60, 76S05. *Corresponding Author’s Email: HYPERLINK "mailto:satyaranjan_mshr@yahoo.co.in" satyaranjan_mshr@yahoo.co.in Mobile No.: (+91)-9937169245

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-137

Citation:

Online since:

June 2019

Export:

Price:

* - Corresponding Author

[1] S. U. S. Choi, Z. G. Zhang, W. Yu, F.E. Lockwood and E. A. Grulke: Anomalously thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters, 79 (2001)2252-2254.

DOI: 10.1063/1.1408272

Google Scholar

[2] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME Fluids Eng. Div., 231 (1995) 99–105.

Google Scholar

[3] S.K. Das, Temperature dependence of thermal conductivity enhancement for nanofluids, ASME J. Heat Transfer, 125 (2003) 567-574.

DOI: 10.1115/1.1571080

Google Scholar

[4] C. Kleinstreuer, Y. Feng, Thermal nanofluid property model with application to nanofluid flow in a parallel-disk system-part I: a new thermal conductivity model for nanofluid flow, ASME J. Heat Transfer, 134 (5) (2012) 051002.

DOI: 10.1115/1.4005632

Google Scholar

[5] W. Ibrahim and B. Shankar, MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions, Computers & Fluids, 75(2013)1–10.

DOI: 10.1016/j.compfluid.2013.01.014

Google Scholar

[6] R. Ellahi, The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions, Appl. Math. Model., 37 (2013) 1451-1467.

DOI: 10.1016/j.apm.2012.04.004

Google Scholar

[7] M. Azimi, A. Azimi, M. Mirzaei, Investigation of the unsteady graphene oxide nanofluid flow between two moving plates, J. Comput. Theor. Nanosci., 11 (10) (2014) 1-5.

DOI: 10.1166/jctn.2014.3612

Google Scholar

[8] M. Sheikholeslami, M. Gorji-Bandpy, R. Ellahi, M. Hassan, S. Soleimani, Effects of MHD on Cuewater nanofluid flow and heat transfer by means of CVFEM, J. Magn. Magn. Mater., 349 (2014) 188-200.

DOI: 10.1016/j.jmmm.2013.08.040

Google Scholar

[9] S.K. Mohammadian, H.R. Seyf, Y. Zhang, Performance augmentation and optimization of aluminum oxideewater nanofluid flow in a two-fluid microchannel heat exchanger, ASME J. Heat Transfer, 136 (2) (2013) 021701.

DOI: 10.1115/1.4025431

Google Scholar

[10] M.J. Stefan, VersuchU¨ ber die scheinbare adhesion, Akademie der Wissenschaften in Wien,Mathematisch-Naturwissenschaftliche, 69(1874)713–721.

Google Scholar

[11] M. Mahmood, S. Asghar, M.A. Hossain, Squeezed flow and heat transfer over a porous surface for viscous fluid, Heat Mass Transf., 44 (2007) 165–173.

DOI: 10.1007/s00231-006-0218-3

Google Scholar

[12] M. Mustafa, T. Hayat, S. Obaidat, On heat and mass transfer in the unsteady squeezing flow between parallel plates, Meccanica, 2012,.

DOI: 10.1007/s11012-012-9536-3

Google Scholar

[13] U. Khan, N. Ahmed, M. Asadullah, and S. T. Mohyud-din, Effects of viscous dissipation and slip velocity on two-dimensional and axisymmetric squeezing flow of Cu-water and Cukerosene nanofluids, Propulsion and Power Research, 4(1)(2015)40–49.

DOI: 10.1016/j.jppr.2015.02.004

Google Scholar

[14] G. Domairry, A. Aziz, Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method, Math. Problems Eng. 2009 (2009) 603916.

DOI: 10.1155/2009/603916

Google Scholar

[15] P.J. Leider, R.B. Bird, Squeezing flow between parallel disks, I: theoretical analysis, Ind. Eng. Chem. Fundam. 13 (1974) 336-341.

DOI: 10.1021/i160052a007

Google Scholar

[16] A. Dib, A. Haiahem, and B. Bou-said, Approximate analytical solution of squeezing unsteady nanofluid flow, Powder Technology, 269(2015)193–199.

DOI: 10.1016/j.powtec.2014.08.074

Google Scholar

[17] M.M. Rashidi, H. Shahmohamadi, S. Dinarvand, Analytic approximate solutions for unsteady two-dimensional and axisymmetric squeezing flows between parallel plates, Math. Probl. Eng., 2008 (2008). Article ID 935095.

DOI: 10.1155/2008/935095

Google Scholar

[18] E.A. Hamza, D.A. Macdonald, A fluid film squeezed between two parallel plane surfaces, J. Fluid Mech., 109 (1981)147- 160.

DOI: 10.1017/s0022112081000980

Google Scholar

[19] J.D. Sherwood, Squeeze flow of a power-law fluid between non-parallel plates, J. Non-Newtonian Fluid Mech., 166 (2011)289-296.

DOI: 10.1016/j.jnnfm.2010.12.007

Google Scholar

[20] S. Islam, H. Khan, I.A. Shah, G. Zaman, An axisymmetric squeezing fluid flow between the two infinite parallel plates in a porous medium channel, Math. Probl. Eng., 2011 (2011). Article ID 349803.

DOI: 10.1155/2011/349803

Google Scholar

[21] P. Singh, V. Radhakrishnan, K.A. Narayan, Squeezing flow between parallel plates, Ing. Arch., 60 (1990)274-281.

DOI: 10.1007/bf00577864

Google Scholar

[22] S. Munawar, A. Mehmood, A. Ali, Three-dimensional squeezing flow in a rotating channel of lower stretching porous wall, Comput. Math. Appl., 64(2012) 1575-1586.

DOI: 10.1016/j.camwa.2012.01.003

Google Scholar

[23] A. Malvandi, F. Hedayati, D.D. Ganji, Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet, Powder Technol., 253 (2014)377-384.

DOI: 10.1016/j.powtec.2013.11.049

Google Scholar

[24] S. Baag, S.R. Mishra, Heat and mass transfer analysis on MHD 3-D water-based nanofluid, Journal of Nanofluid, 4(3) (2015) 352-361.

DOI: 10.1166/jon.2015.1160

Google Scholar

[25] O. D. Makinde, S. R. Mishra, On stagnation point flow of variable viscosity nanofluids past a stretching surface with radiative heat, International Journal of Applied and Computational Mathematics, 3(2) (2017)561-578.

DOI: 10.1007/s40819-015-0111-1

Google Scholar

[26] B.C. Rout, S.R. Mishra, Thermal energy transport on MHD nanofluid flow over a stretching surface: A comparative study, Engineering Science and Technology, an International Journal, 21(1)(2018)60-69.

DOI: 10.1016/j.jestch.2018.02.007

Google Scholar

[27] A.K. Kempannagari, J.V.R. Reddy, V.Sugunamma, N. Sandeep, Impact of frictional heating on MHD radiative ferrofluid past a convective shrinking surface, Defect and Diffusion Forum, 378(2017)157-174.

DOI: 10.4028/www.scientific.net/ddf.378.157

Google Scholar

[28] A.K. Kempannagari, B.Ramadevi, V.Sugunamma, Impact of Lorenz force on unsteady bio-convective flow of Carreau fluid across a variable thickness sheet with non-Fourier heat flux model, Defect and Diffusion Forum, 387(2018)474-497.

DOI: 10.4028/www.scientific.net/ddf.387.474

Google Scholar

[29] A.K. Kempannagari, V.Sugunamma, N. Sandeep, J.V.R. Reddy, Impact of Brownian motion and thermophoresis on bio-convective flow of nanofluids past a variable thickness surface with slip effect, Multidiscipline Modelling in Materials and structures, 15(1)(2018)103-132.

DOI: 10.1108/mmms-02-2018-0023

Google Scholar

[30] A.K. Kempannagari, J.V.R. Reddy, V.Sugunamma, N. Sandeep, Simultaneous solutions for MHD flow of Williomson fluid over a curved sheet with non-uniform heat source/sink, Heat Transfer Research, 50(6)(2019)581-603.

DOI: 10.1615/heattransres.2018025939

Google Scholar

[31] A.K. Kempannagari, V.Sugunamma, N. Sandeep, Impact of non-linear radiation on MHD non-aligned stagnation point flow of micropolar fluid over a convective surface, 43(4)(2018)327-345.

DOI: 10.1515/jnet-2018-0022

Google Scholar

[32] A.K. Kempannagari, J.V.R. Reddy, V.Sugunamma, N. Sandeep, MHD flow of chemically reacting Williomson fluid over a curved/flat surface with variable heat source/sink, International Journal of Fluid Mechanics Research, DOI: 10.1615.InterJFluidMechRes.2018025940.

DOI: 10.1615/interjfluidmechres.2018025940

Google Scholar

[33] B.Ramadevi, V.Sugunamma, A.K. Kempannagari, J.V.R. Reddy, MHD flow of Carreau fluid a variable thickness melting surface subject to Cattaneo-Christov heat flux, Multidiscipline Modelling in Materials and structures, 15(1)(2018)2-25.

DOI: 10.1108/mmms-12-2017-0169

Google Scholar

[34] A.K. Kempannagari, J.V.R. Reddy, V.Sugunamma, N. Sandeep, Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink, Alexandria Engineering Journal, 57(1)(2018)435-443.

DOI: 10.1016/j.aej.2016.11.013

Google Scholar

[35] N. Sandeep, C. Sulochana, MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles, Ain Sham Eng. Journal, 7(2)(2016)709-716.

DOI: 10.1016/j.asej.2015.05.015

Google Scholar

[36] H.F. Oztop, E. Abu-Nada, Numerical study on natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29(2008)1326-1336.

DOI: 10.1016/j.ijheatfluidflow.2008.04.009

Google Scholar

[37] A. Tasveer O.A. Bég, M.M. Rashidi, M. Asadi, Homotopy semi-numerical modelling of nanofluid convection flow from an isothermal spherical body in a permeable regime, Int. Journal of Microscale and Nanoscale Thermal and Fluid Transport Phenomena, 3(4) (2012)67-96.

Google Scholar

[38] J. Srinivas and O.A. Bég, Homotopy study of entropy generation in magnetized micropolar flow in a vertical parallel plate channel with buoyancy effect, Heat Transfer Research, 49(6)(2018)529-553.

DOI: 10.1615/heattransres.2018018305

Google Scholar

[39] M.M. Bhatti, A. Shahid, O.A. Bég, A. Kadir, Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo–Christov heat flux model, Neural Computing and Applications (2017), DOI 10.1007/s00521-017-2933-8 (12 pages).

DOI: 10.1007/s00521-017-2933-8

Google Scholar

[40] G. Adomian, Solving Frontier Problems in Physics: The Decomposition Method, Kluwer, Dordrecht, USA (1994).

Google Scholar

[41] B.J. Hamrock, S.R. Schimdt, B.O. Jacobson, Fundamentals of fluid film lubrication, Marcel, Dekker, Inc.,(2004).

Google Scholar

[42] U.Khan, N. Ahmed, M. Asadullah, S.T. Mohyud-din, Effects of viscuss dissipation and slip velocity on two dimensional and axisymmetric squeezing flow of Cu-water and Cu-kerosene nanofuids, Propulsion and power research, 4(1)(2015)40-49.

DOI: 10.1016/j.jppr.2015.02.004

Google Scholar

[43] M.Azimi, A. Mozaffari, Heat transfer analysis of unsteady grapheme oxide nanofluid flow using a fuzzy idenfier evolved by genetically encoded mutable smart bee algorithm, Engineering Science and Technology, an International Journal, 18(2015)106-123.

DOI: 10.1016/j.jestch.2014.10.002

Google Scholar