Effect of Alloy Elements in Time Temperature Transformation Diagrams of Railway Wheels

Article Preview

Abstract:

The Heavy-Haul railroad wheels started to use higher wear resistance steels microalloyed with niobium, vanadium, and molybdenum [1]. During continuous cooling, these elements depress the temperature of the pearlite formation, producing smaller interlamellar spacing that increases the hardness of the steel, besides to favor the precipitation hardening through the formation of carbides [2, 3]. Also, they delay the formation of difusional components like pearlite and bainite during isothermal transformation. The effects of these alloy elements on microstructure during isothermal transformation were studied in this work using a Bähr 805A/D dilatometer. Three different compositions of class C railway wheels steels (two microalloyed and one, non microalloyed) were analyzed in temperatures between 200 and 700 °C. The microstructure and hardness for each isothermal treatment were obtained after the experiments. Comparing with non microalloyed steel (7C), the vanadium addition (7V steel) did not affect the beginning of diffusion-controlled reactions (pearlite and bainite), but delayed the end of these reactions, and showed separated bays for pearlite and bainite. The Nb + Mo addition delayed the beginning and the ending of pearlite and bainite formation and also showed distinct bays for them. The delays in diffusion-controlled reactions were more intense in the 7NbMo steel than in 7V steel. The V or Nb + Mo additions decreased the start temperature for martensite formation and increased the start temperature for austenite formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-20

Citation:

Online since:

March 2020

Export:

Price:

* - Corresponding Author

[1] W. Yu, L. Liu, Y. Xia, C. Xi. The effect of vanadium on the phase transformation of the 82B steel, J. Metall. Eng., 2 (2013) 140–148.

Google Scholar

[2] L. M. Panfilova, L. A. Smirnov. Bainitic refinement of machine steels microalloyed with vanadium and nitrogen, Metallurgist, 59, 11–12 (2016) 1062–1067.

DOI: 10.1007/s11015-016-0215-9

Google Scholar

[3] Ř. Bohuslav, N. Miroslav, M. Petr. Residual stresses of railway wheels, in 50 th Annual Conference on Experimental Stress Analysis, (2012) 6.

Google Scholar

[4] C. Chattopadhyay, S. Sangal, K. Mondal, A. Garg. Improved wear resistance of medium carbon microalloyed bainitic steels, Wear, 289 (2012) 168–179.

DOI: 10.1016/j.wear.2012.03.005

Google Scholar

[5] R. Uemori, R. Chijiiwa, H. Tamehiro, H. Morikawa. AP-FIM study on the effect of Mo addition on microstructure in Ti-Nb steel, Appl. Surf. Sci., 76–77 (1994) 255–260.

DOI: 10.1016/0169-4332(94)90351-4

Google Scholar

[6] A. B. Rezende, G. A. Amorim, D. J. Minicucci, S. T. Fonseca, P. R. Mei. Effect of vanadium addition on the surface roughness and fatigue crack propagation in a railroad wheel using twin disc wear test, Defect Diffusion Forum, 391 (2019) 66–73.

DOI: 10.4028/www.scientific.net/ddf.391.66

Google Scholar

[7] D. Zapata, J. Jaramillo, A. Toro. Rolling contact and adhesive wear of bainitic and pearlitic steels in low load regime, Wear, 271, 1–2 (2011) 393–399.

DOI: 10.1016/j.wear.2010.10.009

Google Scholar

[8] G. Girsch, R. Heyder. Advanced pearlitic and bainitic high strength rails promise to improve rolling contact fatigue resistence, in 7th World Congress on Railway Research (WCRR2006), 62, 1 (2006) 9.

Google Scholar

[9] P. Clayton, K. J. Sawley, P. J. Bolton, G. M. Pell. Wear behavior of bainitic steels, Wear, 120, 2 (1987) 199–220.

DOI: 10.1016/0043-1648(87)90067-6

Google Scholar

[10] W. Solano-Alvarez, E. J. Pickering, H. K. D. H. Bhadeshia. Degradation of nanostructured bainitic steel under rolling contact fatigue, Mater. Sci. Eng. A, 617 (2014) 156–164.

DOI: 10.1016/j.msea.2014.08.071

Google Scholar

[11] E.P. Da Silva et al., Isothermal transformations in advanced high strength steels below martensite start temperature, Mater. Sci. Technol., 31, 7 (2015) 808–816.

DOI: 10.1179/1743284714y.0000000719

Google Scholar

[12] T. Takahashi, W. A. Bassett, M. Hokwang. Isothermal compression of the alloys of iron up to 300 kbar at room temperature. J. Geophys. Res. B, 73 (1968) 4717–4725.

DOI: 10.1029/jb073i014p04717

Google Scholar

[13] R. Kohlhaas, P. Duenner, N. Schmitz-Pranghe. The temperature dependence of the lattice parameters of iron, cobalt and nickel in the range of high temperatures, Zeitschrift fuer Angew. Phys., 23, 4 (1967) 245–249.

Google Scholar

[14] J. Trzaska. Calculation of critical temperatures by empirical formula, Arch. Metall. Mater., 61 2B, (2016) 981–986.

Google Scholar

[15] C. Capdevila, F. G. Caballero, C. G. de Andrés. Determination of Ms temperature in steels: A Bayesian neural network model. ISIJ Int., 42, 8, (2002) 894–902.

DOI: 10.2355/isijinternational.42.894

Google Scholar

[16] T. Kunitake. Prediction of Ac1, Ac3 and Ms temperatures by empirical formulas. J. Japan Soc. Heat Treat., 41 (2001) 164–169.

Google Scholar

[17] M. Masoumi, E. A. A. Echeverri, A. Tschiptschin, H. Goldenstein. Improvement of wear resistance in a pearlitic rail steel via quenching and partitioning processing. Nature: Scientific Reports, 9, 7454 (2019) 01-12.

DOI: 10.1038/s41598-019-43623-7

Google Scholar

[18] Z. Song , S. Zhao ,T. Jiang  et al. Effect of nanobainite content on the dry sliding wear behavior of an Al-alloyed high carbon steel with nanobainitic microstructure, Materials, 12 (10), 1618 (2019) 01-13.

DOI: 10.3390/ma12101618

Google Scholar

[19] O. Hajizad, A. Kumar, Z. Li  et al. Influence of microstructure on mechanical properties of bainitic steels in railway applications, Metals, 9 (7), 778 (2019) 01-19.

DOI: 10.3390/met9070778

Google Scholar

[20] A. Kumar, G. Agarwal, R. Petrov et al. Microstructural evolution of white and brown etching layers in pearlitic rail steels, Acta Materialia, 171 (2019) 48-64.

DOI: 10.1016/j.actamat.2019.04.012

Google Scholar

[21] A. Kumar, S. K. Makineni, A. Dutta et al, Design of high-strength and damage-resistant carbide-free fine bainitic steels for railway crossing applications, Materials Science and Engineering: A, 759 (2019) 210-223.

DOI: 10.1016/j.msea.2019.05.043

Google Scholar

[22] T. Leitner, S. Sackl, B. Völker et al . Crack path identification in a nanostructured pearlitic steel using atom probe tomography, Scripta Materialia, 142 (2018) 66-69.

DOI: 10.1016/j.scriptamat.2017.08.025

Google Scholar

[23] M. Zhu, G. Xu, M. Zhou et al, Effects of Tempering on the Microstructure and Properties of a High-Strength Bainite Rail Steel with Good Toughness. Metals, 8, 484 (2018) 01-11.

DOI: 10.3390/met8070484

Google Scholar

[24] S. M. Hasan, D. Chakrabarti, S. B. Singh. Dry rolling/sliding wear behaviour of pearlitic rail and newly developed carbide-free bainitic rail steels. Wear, 408–409 (2018) 151–159.

DOI: 10.1016/j.wear.2018.05.006

Google Scholar

[25] W.T. Zhu, L.C. Guo, L.B. Shi et al. Wear and damage transitions of two kinds of wheel materials in the rolling-sliding contact, Wear, 398–399 (2018) 79–89.

DOI: 10.1016/j.wear.2017.11.023

Google Scholar

[26] X. J. Zhao, J. Guo, Q. Y. Liu. Effect of spherical dents on microstructure evolution and rolling contact fatigue of wheel/rail materials, Tribology International, 127 (2018) 520–532.

DOI: 10.1016/j.triboint.2018.07.001

Google Scholar

[27] A. Ray. Niobium microalloying in rail steels, Materials Science and Technology, 33:14 (2017) 1584-1600.

DOI: 10.1080/02670836.2017.1309111

Google Scholar

[28] D. Zeng, L. Lu, Y. Gong et al. Optimization of strength and toughness of railway wheel steel by alloy design, Materials and Design, 92 (2016) 998–1006.

DOI: 10.1016/j.matdes.2015.12.096

Google Scholar

[29] L. B. Godefroid, L. P. Moreira, T. C. G. Vilela et al. Effect of chemical composition and microstructure on the fatigue crack growth resistance of pearlitic steels for railroad application, International Journal of Fatigue, 120 (2019) 241–25.

DOI: 10.1016/j.ijfatigue.2018.10.016

Google Scholar

[30] Q. Li, J. Guo, A. Zhao. Effect of upper bainite on wear behaviour of high-speed wheel steel. Tribology Letters, 67: 121 (2019) 01-09.

DOI: 10.1007/s11249-019-1239-7

Google Scholar

[31] F. Fazeli, B. S. Amirkhiz, C. Scott et al. Kinetics and microstructural change of low-carbon bainite due to vanadium microalloying. Materials Science & Engineering A, 720 (2018) 248–256.

DOI: 10.1016/j.msea.2018.02.042

Google Scholar

[32] T. Sourmail, C. Garcia-Mateo, F. G. Caballero et al. The influence of vanadium on ferrite and bainite formation in a medium carbon steel. Metallurgical and Materials Transactions A, 48: (2017) 3985–3996.

DOI: 10.1007/s11661-017-4188-5

Google Scholar

[33] C. Garcia-Mateo, L. Morales-Rivas, F. G. Caballero et al. Vanadium effect on a medium carbon forging steel. Metals, 6, 130 (2016) 01-12.

DOI: 10.3390/met6060130

Google Scholar

[34] D. Zeng, L. Lu, Y. Gong et al. Influence of solid solution strengthening on spalling behavior of railway wheel steel. Wear, 372-373 (2017) 158–168.

DOI: 10.1016/j.wear.2016.12.025

Google Scholar

[35] P. P. Senthil, K. S. Raob, H. K. Nandia et al. Influence of niobium microalloying on the microstructure and mechanical properties of high carbon nano bainitic steel. Procedia Structural Integrity, 14 (2019) 729–737.

DOI: 10.1016/j.prostr.2019.05.091

Google Scholar

[36] Y. Zhou, J. F. Peng, W. J. Wang, X. S. Jin, M. H. Zhu. Slippage effect on rolling contact wear and damage behavior of pearlitic steels. Wear, 362-363 (2016) 78–86.

DOI: 10.1016/j.wear.2016.05.001

Google Scholar