Microstructure of Hydroxyapatite/Collagen Coating on AZ31 Magnesium Alloy by a Solution Treatment

Article Preview

Abstract:

HA and HA/Col were prepared by a solution treatment on AZ31 magnesium alloy. The microstructure and composition of coatings were studied by SEM, XRD. In vitro study was performed by immersion the sample In Hank’s solution for 7 days. The H2 evolution of the HA/col coating was as low as 0.24 ml/cm2 which can insignificant increase the corrosion resistance of AZ31.

You might also be interested in these eBooks

Info:

Pages:

38-44

Citation:

Online since:

January 2017

Export:

Price:

* - Corresponding Author

[1] Y. Song, D. Shan, R. Chen, F. Zhang, E. -H. Han, Formation mechanism of phosphate conversion film on Mg–8. 8Li alloy, Corros Sci, 51 (2009) 62-69.

DOI: 10.1016/j.corsci.2008.10.001

Google Scholar

[2] Q.H. Bao, X.X. Li, C. Zhang, C. Sun, Preparation and Characterization of DPCD Coating on Mg-Ca-Zn Magnesium Alloy by a Phosphating Treatment, Thrombosis & Haemostasis, 20 (2014) 65-71.

DOI: 10.4028/www.scientific.net/jbbbe.20.65

Google Scholar

[3] M. Tomozawa, S. Hiromoto, Microstructure of hydroxyapatite- and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values, Acta Mater, 59 (2011) 355-363.

DOI: 10.1016/j.actamat.2010.09.041

Google Scholar

[4] F. Geng, L.L. Tan, X.X. Jin, J.Y. Yang, K. Yang, The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium, Journal of Materials Science Materials in Medicine, 20 (2009) 1149-1157.

DOI: 10.1007/s10856-008-3669-x

Google Scholar

[5] M. Tomozawa, S. Hiromoto, Y. Harada, Microstructure of hydroxyapatite-coated magnesium prepared in aqueous solution, Surface and Coatings Technology, 204 (2010) 3243-3247.

DOI: 10.1016/j.surfcoat.2010.03.023

Google Scholar

[6] X.B. Chen, N. Birbilis, T.B. Abbott, A simple route towards a hydroxyapatite–Mg(OH)2 conversion coating for magnesium, Corros Sci, 53 (2011) 2263-2268.

DOI: 10.1016/j.corsci.2011.03.008

Google Scholar

[7] H.R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar, M.A.M. Yajid, M. Medraj, Fabrication and corrosion behavior of Si/HA nano-composite coatings on biodegradable Mg–Zn–Mn–Ca alloy, Surface and Coatings Technology, 258 (2014) 1090-1099.

DOI: 10.1016/j.surfcoat.2014.07.025

Google Scholar

[8] M. Tomozawa, S. Hiromoto, Growth mechanism of hydroxyapatite-coatings formed on pure magnesium and corrosion behavior of the coated magnesium, Appl Surf Sci, 257 (2011) 8253-8257.

DOI: 10.1016/j.apsusc.2011.04.087

Google Scholar

[9] N. Temizel, G. Girisken, A.C. Tas, Accelerated transformation of brushite to octacalcium phosphate in new biomineralization media between 36. 5°C and 80°C, Materials Science and Engineering: C, 31 (2011) 1136-1143.

DOI: 10.1016/j.msec.2011.04.009

Google Scholar

[10] X.B. Chen, N. Birbilis, T.B. Abbott, Effect of [Ca2+] and [] levels on the formation of calcium phosphate conversion coatings on die-cast magnesium alloy AZ91D, Corros Sci, 55 (2012) 226-232.

DOI: 10.1016/j.corsci.2011.10.022

Google Scholar

[11] Y. Choi, S.I. Hong, Apatite deposition and collagen coating effects in Ti-Al-V and Ti-Al-Nb alloys, Phys. Metals Metallogr., 115 (2014) 1307-1312.

DOI: 10.1134/s0031918x1413002x

Google Scholar

[12] A.T. Sverzut, G.E. Crippa, M. Morra, P.T. de Oliveira, M.M. Beloti, A.L. Rosa, Effects of type I collagen coating on titanium osseointegration: histomorphometric, cellular and molecular analyses, Biomedical materials, 7 (2012) 035007.

DOI: 10.1088/1748-6041/7/3/035007

Google Scholar

[13] N. Zhao, D. Zhu, Collagen self-assembly on orthopedic magnesium biomaterials surface and subsequent bone cell attachment, PLoS One, 9 (2014) e110420.

DOI: 10.1371/journal.pone.0110420

Google Scholar

[14] N. Zhao, B. Workman, D. Zhu, Endothelialization of novel magnesium-rare earth alloys with fluoride and collagen coating, Int J Mol Sci, 15 (2014) 5263-5276.

DOI: 10.3390/ijms15045263

Google Scholar

[15] M. Salahshoor, Y.B. Guo, Biodegradation Control of Magnesium-calcium Biomaterial Via Adjusting Surface Integrity by Synergistic Cutting-burnishing, Procedia CIRP, 13 (2014) 143-149.

DOI: 10.1016/j.procir.2014.04.025

Google Scholar

[16] M. Kikuchi, T. Ikoma, S. Itoh, H.N. Matsumoto, Y. Koyama, K. Takakuda, K. Shinomiya, J. Tanaka, Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen, Compos Sci Technol, 64 (2004).

DOI: 10.1016/j.compscitech.2003.09.002

Google Scholar

[17] C. Wen, S. Guan, L. Peng, C. Ren, X. Wang, Z. Hu, Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications, Appl Surf Sci, 255 (2009) 6433-6438.

DOI: 10.1016/j.apsusc.2008.09.078

Google Scholar

[18] S. Bose, S. Dasgupta, S. Tarafder, A. Bandyopadhyay, Microwave-processed nanocrystalline hydroxyapatite: Simultaneous enhancement of mechanical and biological properties, Acta Biomaterialia, 6 (2010) 3782-3790.

DOI: 10.1016/j.actbio.2010.03.016

Google Scholar

[19] G. Ciobanu, O. Ciobanu, Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces, Materials science & engineering. C, Materials for biological applications, 33 (2013) 1683-1688.

DOI: 10.1016/j.msec.2012.12.080

Google Scholar

[20] Y.F. Chou, W.A. Chiou, Y. Xu, J.C. Dunn, B.M. Wu, The effect of pH on the structural evolution of accelerated biomimetic apatite, Biomaterials, 25 (2004) 5323-5331.

DOI: 10.1016/j.biomaterials.2003.12.037

Google Scholar