Novel Nanocrystal Clay Materials with Potential Bone Cells Growth Enhancement or Inhibition Characteristics In Vitro

Article Preview

Abstract:

The application of clay nanocrystals in healing has gained notoriety in recent years. The objective of this work was to investigate whether two medical clay nanocrystals obtained from different geographical locations could exhibit differential cell growth. X-ray diffraction analyses of both nanocrystal materials revealed orthorhombic chamosite structure with lattice parameters: a =15 Å, b= 8 Å and c=7 Å whereas energy dispersive x-ray results showed the presence of Al, Si, Fe and O in both materials. However the porosity measurements of the two materials revealed different pore structures. Both materials were tested on human fetal osteoblast cells and the results showed differential cell growth in vitro. The results underscore the significance of pore structures in cell response as against the chemical composition or the structure of the material. Future mechanistic evaluation would be conducted to better understand the pathways leading to the increased/decrease osteoblast adhesion and proliferation by these materials and possible modification of the clay materials for biomedical applications.

You might also be interested in these eBooks

Info:

Pages:

45-60

Citation:

Online since:

January 2017

Export:

Price:

* - Corresponding Author

[1] E. Zuskin, J. Lipozencic, J. Pucarin-Cvetkovic, J. Mustajbegovic, N. Schachter, B. Mucic-Pucic, I. Neralic-Meniga, Acta dermatovenerol croat 16 (2008) 149-157.

Google Scholar

[2] J.W. Verano, Perspect health 4 (1999) 9-12.

Google Scholar

[3] R. Kinaston, S. Bedford, M. Richards, S. Hawkins, A. Gray, K. Jaouen, F. Valentin, H. Buckley, PLoS One 9 (2014) e104071.

DOI: 10.1371/journal.pone.0104071

Google Scholar

[4] J.K. Borchardt, Drug news perspective 15 (2002) 187-192.

Google Scholar

[5] G.G. Zhanel, J.A. Karlowsky, MBio 7 (2016) 1-2.

Google Scholar

[6] L.B. Williams, S.E. Haydel, International geological review 52 (2010) 745-770.

Google Scholar

[7] P.J. Leggo, B. Ledesert, G. Christie, Science of the total environment 363 (2006) 1-10.

Google Scholar

[8] C. Roselli, D. Desideri, C. Cantaluppi, M. Mattioli, A. Fasson, M.A. Meli, Journal of toxicology and environmental health A 78 (2015) 316-324.

DOI: 10.1080/15287394.2014.964430

Google Scholar

[9] M. Devreese, F. Pasmans, P. De Backer, S. Croubels, Toxicology in vitro 27 (2013) 157-163.

Google Scholar

[10] S.L. Young, M.J. Wilson, S. Hillier, E. Delbos, S.M. Ali, R.J. Stoltzfus, Journal of chemical ecology 36 (2010) 129-140.

Google Scholar

[11] L. Groisman, C. Rav-Acha, Z. Gerstl, U. Mingelgrin, Journal of environmental quality 33 (2004) 1930-(1936).

DOI: 10.2134/jeq2004.1930

Google Scholar

[12] C.C. Otto, S.E. Haydel, PLoS One 8 (2013) e64068.

Google Scholar

[13] M. Taghipour, M. Jalali, Journal of hazard materials 297 (2015) 127-133.

Google Scholar

[14] J.I. Dawson, R.O. Oreffo, Advance materials 25 (2013) 4069-4086.

Google Scholar

[15] S.K. Agrawal, N. Sanabria-Delong, G.N. Tew, S.R. Bhatia, Langmuir 24 (2008) 13148-13154.

DOI: 10.1021/la8015518

Google Scholar

[16] M. Ul-Islam, T. Khan, J.K. Park, Carbohydrate polymers 89 (2012) 1189-1197.

Google Scholar

[17] A.B. Colson, C. de Armellada, Social science and medicine 17 (1983) 1229-1248.

Google Scholar

[18] M.P. Richards, European journal of clinical nutrition 56 (2002) 16 p following 1262.

Google Scholar

[19] R. Shengelia, L. Bitadze, S. Laliashvili, Georgian medical news (2012) 75-81.

Google Scholar

[20] R.J. Stacey, Analytical bioanalytical chemistry 401 (2011) 1749-1759.

Google Scholar

[21] S.E. Fraser, T. Insoll, A. Thompson, B.E. van Dongen, Journal of archaeological science 39 (2012) 2506-2514.

Google Scholar

[22] B.W. Kankpeyeng, S.N. Nkumbaan, T. Insoll, Anthropology and Medicine 18 (2011) 205-216.

Google Scholar

[23] B. Kankpeyeng, N. Swanepoel, T. Insoll, S. Nkumbaan, S. Amartey, M. Saako, African archaeological review 30: (2013) 475-499.

DOI: 10.1007/s10437-013-9143-2

Google Scholar

[24] J. Cervini-Silva, M.T. Ramirez-Apan, S. Kaufhold, K. Ufer, E. Palacios, A. Montoya, Chemosphere 149 (2016) 57-61.

DOI: 10.1016/j.chemosphere.2016.01.077

Google Scholar

[25] S. Maisanaba, D. Gutierrez-Praena, S. Pichardo, F.J. Moreno, M. Jorda, A.M. Camean, S. Aucejo, A. Jos, Journal of applied toxicology 34 (2014) 714-725.

Google Scholar

[26] S.P. Indraratne, A. Farenhorst, T.B. Goh, Journal of environmental Science and health B 43 (2008) 21-26.

Google Scholar

[27] S.L. Lemke, K. Mayura, W.R. Reeves, N. Wang, C. Fickey, T.D. Phillips, Journal of toxicology and environmental health A 62 (2001) 243-258.

DOI: 10.1080/009841001459405

Google Scholar

[28] S.E. Haydel, C.M. Remenih, L.B. Williams, Journal of antimicrobial chemotherapy 61 (2008) 353-361.

Google Scholar

[29] S. Kar, T. Kaur, A. Thirugnanam, International journal of biological macromolecules 82 (2016) 628-636.

Google Scholar

[30] W. Li, L. Sun, L. Pan, Z. Lan, T. Jiang, X. Yang, J. Luo, R. Li, L. Tan, S. Zhang, M. Yu, European journal of pharmaceutics and biopharmaceutics 88 (2014) 706-717.

DOI: 10.1016/j.ejpb.2014.09.014

Google Scholar

[31] J. Cervini-Silva, A. Nieto-Camacho, E. Palacios, J.A. Montoya, V. Gomez-Vidales, M.T. Ramirez-Apan, Colloids surface B biointerfaces 111 (2013) 651-655.

DOI: 10.1016/j.colsurfb.2013.06.056

Google Scholar

[32] J.M. Hunter, Geographical review 63 (1973) pp.170-195.

Google Scholar

[33] U.A. Lar, J.I. Agene, A.I. Umar, Environmental geochemistry health 37 (2015) 363-375.

Google Scholar

[34] D.E. Vermeer, Annals of the association of american geographers 56 (1966) 197-204.

Google Scholar

[35] D.E. Vermeer, Ethnology 10 (1971) 56-72.

Google Scholar

[36] B.E. van Dongen, S.E. Fraser, T. Insoll, Anthropology and medicine 18 (2011) 285-302.

Google Scholar

[37] T. Insoll, Anthropology and medicine 18 (2011) 145-166.

Google Scholar

[38] P. Sengupta, N.D. N. J. Saikia, J. Bharali, P.C. Saikia, P.C. Borthakur, Current science 9 (2006).

Google Scholar

[39] A. Sreedhar, R., Amarnath Reddy, M., and Parthasarathy, G., Applied clay ccience 43 (2008) 425–434.

Google Scholar

[40] G.W. a.Y. R.F. Brindley, Mineral magazine 25 (1952) 441-445.

Google Scholar

[41] P.J.A.S. Saccocia, W. E> Jnr., American mineralogist 78 (1993) 607-661 601.

Google Scholar

[42] R. Arundhath, Sreedhar, B., and Parthasarathy, G., Clay minerals 45 ( 2010) 281–299.

Google Scholar

[43] L.L. Nicholson, D. Reed, C. Chan, Biomed central 16 (2016) 7.

Google Scholar

[44] D. Khang, J. Lu, C. Yao, K.M. Haberstroh, T.J. Webster, Biomaterials 29 (2008) 970-983.

Google Scholar

[45] P. Tran, T.J. Webster, International journal nanomedicine 3 (2008) 391-396.

Google Scholar

[46] A. Weselucha-Birczynska, M. Swietek, E. Soltysiak, P. Galinski, L. Plachta, K. Piekara, M. Blazewicz, Analyst 140 (2015) 2311-2320.

Google Scholar

[47] H.M. Lewkowitz-Shpuntoff, M.C. Wen, A. Singh, N. Brenner, R. Gambino, N. Pernodet, R. Isseroff, M. Rafailovich, J. Sokolov, Biomaterials 30 (2009) 8-18.

DOI: 10.1016/j.biomaterials.2008.09.015

Google Scholar

[48] Y. Li, Y. Jiao, X. Li, Z. Guo, Biochemical biophysical research communication 460 (2015) 151-156.

Google Scholar

[49] E. K. Tiburu, H.N.A. Fleischer E.O. Aidoo, A.A. Salifu, B.O. Asimeng, H. Zhou, Journal of Biomimetics, Biomaterials and Biomedical Engineering 28(2016) 66-77.

DOI: 10.4028/www.scientific.net/jbbbe.28.66

Google Scholar