Characterization and Multi-Response Morphological Optimization for Preparation of Defect-Free Electrospun Nanofibers Using the Taguchi Method

Article Preview

Abstract:

The study presents a method on producing defect-free polyvinyl alcohol-gelatin (PVAG) nanofibers by considering multiple morphological characteristics of the produced nanofibers using the Taguchi method. Aside from minimizing the average fiber diameter, the method was also used to produce consistent, monodispersed PVAG nanofibers without the usual defects of beading and splattering. The experiments are performed considering the effect of polymer composition (PVAG ratio and solvent ratio of water, formic acid, and acetic acid H2O:FA:HAc) and process factors (tip-to-collector distance TCD and solution flow rate) on fiber morphology. Fiber morphology is measured in terms of 4 responses: average fiber diameter, standard deviation of fiber diameter, occurrence of beading, and occurrence of splattering. Results show that maximum overall desirability for electrospinning PVAG nanofibers at smallest average diameter and deviation (26.10 ± 9.88 nm) with chance of moderate beading and zero splattering is predicted at PVAG mass ratio of 6.5:3.5, H2O:FA:HAc solvent volume ratio of 4:4:2, TCD of 12.5 cm, and flow rate of 1 ml h-1. Results of confirmatory run agree with the predicted factor levels at maximum desirability, with average fiber diameter and standard deviation measured to be 26.95 ± 6.39 nm. PVAG nanofibers of the confirmatory run are also both bead-and splatter-free. Results suggest the application of Taguchi method can offer a robust and rapid approach in deriving the conditions for production of new and high-quality PVAG nanofibers for tissue engineering scaffolds.

You might also be interested in these eBooks

Info:

Pages:

61-75

Citation:

Online since:

January 2017

Export:

Price:

* - Corresponding Author

[1] W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofiber assemblies, Nanotechnology 17 (2006) R89.

DOI: 10.1088/0957-4484/17/14/r01

Google Scholar

[2] Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63 (2003) 2223-2253. http: /dx. doi. org/10. 1016/S0266-3538(03)00178-7.

DOI: 10.1016/s0266-3538(03)00178-7

Google Scholar

[3] L. Persano, A. Camposeo, C. Tekmen, D. Pisignano, Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review, Macromol. Mater. Eng. 298 (2013) 504-520. http: /dx. doi. org/10. 1002/mame. 201200290.

DOI: 10.1002/mame.201200290

Google Scholar

[4] S-H Lee, J.W. Yoon, M. Suh, Continuous nanofibers manufactured by electrospinning technique, Macromol. Res. 10 (2002) 282-285. http: /dx. doi. org/10. 1007/BF03218319.

DOI: 10.1007/bf03218319

Google Scholar

[5] N. Bhardwai, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnol. Adv. (2010) 156-165. HTTP: /DX. DOI. ORG/10. 1016/j. biotechadv. 2010. 01. 004.

Google Scholar

[6] D. Han, P.I. Gouma, Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomed: nanotechnol. bio. med. 2 (2006) 37-41.

DOI: 10.1016/j.nano.2006.01.002

Google Scholar

[7] S. Cai, H. Xu, Q. Jiang, Y. Yang, Novel 3D Electrospun Scaffolds with Fibers Oriented Randomly and Evenly in Three Dimensions to Closely Mimic the Unique Architectures of Extracellular Matrices in Soft Tissues: Fabrication and Mechanism Study, Langmuir 29 (2013).

DOI: 10.1021/la304414j

Google Scholar

[8] X. Wang, B. Ding, B. Li, Biomimetic electrospun nanofibrous structures for tissue engineering, Mater. Today 16 (2013) 229-241. http: /dx. doi. org/10. 1016/j. mattod. 2013. 06. 005.

DOI: 10.1016/j.mattod.2013.06.005

Google Scholar

[9] A. Atala, Tissue Engineering and Regenerative Medicine: Concepts for Clinical Application, Rejuv. Res 7 (2004) 15-31. http: /dx. doi. org/10. 1089/154916804323105053.

Google Scholar

[10] R. Langer, Biomaterials in Drug Delivery and Tissue Engineering:  One Laboratory's Experience, Acc. Chem. Res. 33 (1999) 94-101. http: /dx. doi. org/10. 1021/ar9800993.

DOI: 10.1021/ar9800993

Google Scholar

[11] C. Huang, X. Fu, J. Liu, Y. Qi, S. Li, H. Wang, The involvement of integrin β1 signaling in the migration and myofibroblastic differentiation of skin fibroblasts on anisotropic collagen-containing nanofibers, Biomater. 33 (2012).

DOI: 10.1016/j.biomaterials.2011.11.025

Google Scholar

[12] S. Talebian, M. Mehrali, S. Mohan, H. Balaji raghavendran, M. Mehrali, H.M. Khanlou, T. Kamarul, A.M. Afifi, A.A. Abassb, Chitosan (PEO)/bioactive glass hybrid nanofibers for bone tissue engineering, RSC Adv. 4 (2014).

DOI: 10.1039/c4ra06761d

Google Scholar

[13] J. Xie, Y. Xia, Electrospinning: An Enabling Technique for Nanostructured Materials, Mater. Mat. 19 (2008) 3. 1.

Google Scholar

[14] V. Beachley, X. Wen, Effect of electrospinning parameters on the nanofiber diameter and length, Mater. Sci. Eng. C 29 (2009) 663-668. http: /dx. doi. org/10. 1016/j. msec. 2008. 10. 037.

DOI: 10.1016/j.msec.2008.10.037

Google Scholar

[15] Z. Li, C. Wang, One-Dimensional nanostructures, Springer Berlin Heidelberg, 2013; 15-28.

Google Scholar

[16] J. Pelipenko, J. Kristl, B. Janković, S. Baumgartner, P. Kocbek, The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers, Int. J. Pharm. 456 (2013).

DOI: 10.1016/j.ijpharm.2013.07.078

Google Scholar

[17] S. Anandhan, K. Ponprapakaran, T. Senthil, G. George, Parametric study of manufacturing ultrafine polybenzimidazole fibers by electrospinning, Int. J. Plast. Technol. 16 (2012) 101-116. http: /dx. doi. org/10. 1007/s12588-012-9036-2.

DOI: 10.1007/s12588-012-9036-2

Google Scholar

[18] K.P. Matabola, R.M. Moutloali, The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride, J. Mat. Sci. 48 (2013).

DOI: 10.1007/s10853-013-7341-6

Google Scholar

[19] L. Bosworth, S. Downes, Acetone, a Sustainable Solvent for Electrospinning Poly(ε-Caprolactone) Fibres: Effect of Varying Parameters and Solution Concentrations on Fibre Diameter. J. Polym. Environ. 20 (2012).

DOI: 10.1007/s10924-012-0436-3

Google Scholar

[20] H.M. Khanlou, B.C. Ang, S. Talebian, M.M. Barzani, M. Silakhori, H. Fauzi, Multi-response analysis in the processing of poly (methyl methacrylate) nano-fibres membrane by electrospinning based on response surface methodology: Fibre diameter and bead formation, Measurement 65 (2015).

DOI: 10.1016/j.measurement.2015.01.014

Google Scholar

[21] H.M. Khanlou, A. Sadollah, B.C. Ang, J.H. Kim, S. Talebian, A. Ghadimi, Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks, Neural Comput. Appl. 25 (2014).

DOI: 10.1007/s00521-014-1554-8

Google Scholar

[22] M.L. Hallensleben, Ullmann's Encyclopedia of Industrial Chemistry Wiley-VCH, Weinheim, Germany, (2000).

Google Scholar

[23] B. Dhandayuthapani, Y. Yoshida, T. Maekawa, D.S. Kumar, Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci. 2011(2011) 1. http: /dx. doi. org/10. 1155/2011/290602.

DOI: 10.1155/2011/290602

Google Scholar

[24] S. Talebian, A.M. Afifi, H.M. Khanlou, Fabrication and characterisation of chitosan/poly vinyl alcohol nanofibres via electrospinning, Mater. Res. Innov. 18 (2014), S6-331-S6-335. http: /dx. doi. org/10. 1179/1432891714Z. 000000000979.

DOI: 10.1179/1432891714z.000000000979

Google Scholar

[25] C.Y. Shih, J.Y. Lai, Polyvinyl alcohol plasma deposited nylon 4 membrane for hemodialysis, J. Biomed. Mater. Res. 27 (1993) 983-989. http: /dx. doi. org/10. 1002/jbm. 820270803.

DOI: 10.1002/jbm.820270803

Google Scholar

[26] M.I. Baker, S.P. Walsh, Z. Schwartz, B.D. Boyan, A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications, J. Biomed. Mater. Res. B. 2012; 100: 1451-1457. http: /dx. doi. org/10. 1002/jbm. b. 32694.

DOI: 10.1002/jbm.b.32694

Google Scholar

[27] N.T.B. Linh, Y.K. Min, H.Y. Song, B.T. Lee, Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties, J. Biomed. Mater. Res. B. (2010) 184-191. http: /dx. doi. org/10. 1002/jbm. b. 31701.

DOI: 10.1002/jbm.b.31701

Google Scholar

[28] S. Feng, H. Chen, Y. Liu, Z. Huang, X. Sun, L. Zhou, X. Lu, Q. Gao, A Novel Vitreous Substitute of Using a Foldable Capsular Vitreous Body Injected with Polyvinyl alcohol Hydrogel. Sci. Rep. 3 (2013) 1-11. http: /dx. doi. org/10. 1038/srep01838.

DOI: 10.1038/srep01838

Google Scholar

[29] D.R. Paul, J.W. Barlow, A Brief Review of Polymer Blend Technology, in: S. L. Cooper, G.M. Estes (Eds. ), Multiphase Polymers, American Chemical Society, Washington, 1979. pp.315-335. http: /dx. doi. org/10. 1021/ba-1979-0176. ch017.

DOI: 10.1021/ba-1979-0176.ch017

Google Scholar

[30] L. Yu, K. Dean, L. Li, Polymer blends and composites from renewable resources, Prog. Polym. Sci. 31 (2006) 576-602. http: /dx. doi. org/10. 1016/j. progpolymsci. 2006. 03. 002.

DOI: 10.1016/j.progpolymsci.2006.03.002

Google Scholar

[31] S. Talebian, A.M. Afifi, M. Hatami, S. Bazgir, H.M. Khanlou, Preparation and characterisation of electrospun silica nanofibres, Mater. Res. Innov. 18 (2014) S6-510-S6-514. http: /dx. doi. org/ 10. 1179/1432891714Z. 0000000001034.

DOI: 10.1179/1432891714z.0000000001034

Google Scholar

[32] M. Niaounakis, Biopolymers: Processing and Products (1st edn). William Andrew Publishing: Oxford, 2015. http: /dx. doi. org/10. 1016/B978-0-323-26698-7. 00003-9.

Google Scholar

[33] S. Van Vlierberghe, E. Vanderleyden, V. Boterberg, P. Dubruel, Gelatin Functionalization of Biomaterial Surfaces: Strategies for Immobilization and Visualization, Polym. 3 (2011) 114-130. http: /dx. doi. org/10. 3390/polym3010114.

DOI: 10.3390/polym3010114

Google Scholar

[34] T.Q. Bao, R.A. Franco, B.T. Lee, Material properties and characterizations of cross-linked electro-spinning raspberry ketone incorporated polyvinyl alcohol/gelatin fibrous scaffolds. Biomed. Sci. Eng. 4 (2011).

DOI: 10.4236/jbise.2011.41001

Google Scholar

[35] G. Taguchi, S. Chowdhury, Y. Wu, Quality Engineering: The Taguchi Method, in: G. Taguchi, S. Chowdhury, Y. Wu (Eds. ), Taguchi's Quality Engineering Handbook, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2007. p.56.

DOI: 10.1002/9780470258354

Google Scholar

[36] H.M. Khanlou, B.C. Ang, S. Talebian, A.M. Afifi, A. Andriyana, Electrospinning of polymethyl methacrylate nanofibers: optimization of processing parameters using the Taguchi design of experiments, Tex. Res. J. (2015).

DOI: 10.1177/0040517514547208

Google Scholar

[37] J. Antony, S. Warwood, K. Fernandes, H. Rowlands, Process optimisation using Taguchi methods of experimental design. Work Stud. 50 (2001) 51-58. http: /dx. doi. org/10. 1108/00438020110366330.

DOI: 10.1108/00438020110366330

Google Scholar

[38] N. Amini, M. Kalaee, S. Mazinani, S. Pilevar, S.O. Ranaei-Siadat, Morphological optimization of electrospun polyacrylamide/MWCNTs nanocomposite nanofibers using Taguchi's experimental design, Int. J. Adv. Manuf. Tech 69 (2013).

DOI: 10.1007/s00170-013-5006-x

Google Scholar

[39] J.C. Lu, S.L. Jeng, K. Wang, A review of statistical methods for quality improvement and control in nanotechnology. J. Qual. Technol. 41 (2009) 1-148.

Google Scholar

[40] T.W. Simpson, Taguchi's Robust Design Method, in: R.A. Wysk, B.W. Niebel, P.H. Cohen, T.W. Simpson(Eds. ), Manufacturing Processes: Integrated Product and Process Design, McGraw-Hill: New York, 2000, pp.1-9.

Google Scholar

[41] L. Ilzarbe, M. J. Alvarez, E. Viles, M. Tanco, Practical applications of design of experiments in the field of engineering: a bibliographical review, Qual. Reliab. Eng. Int. 24 (2008) 417-428. http: /dx. doi. org/10. 1002/qre. 909.

DOI: 10.1002/qre.909

Google Scholar

[42] A. Haider, S. Haider, I. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology, Arabian J. In Press (2015).

DOI: 10.1016/j.arabjc.2015.11.015

Google Scholar

[43] D. Stewardson, Robust Engineering, Qual. Reliab. Eng. Int. 17 (2001) 141-142. http: /dx. doi. org/10. 1002/qre. 382.

Google Scholar

[44] R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (2nd edn). Wiley, New Jersey, (2009).

Google Scholar

[45] C.S. Cheng, Theory of Factorial Design: Single- and Multi- stratum Experiment. CRC Press, Florida, 2014; 51-238.

Google Scholar

[46] T.H. Hou, C.H. Su, W.L. Liu, Parameters Optimization of a Nano-Particle Wet Milling Process Using the Taguchi Method, Response Surface Method and Genetic Algorithm. Powder Technol. 173 (2007).

DOI: 10.1016/j.powtec.2006.11.019

Google Scholar

[47] B.N. Akhgar, M. Pazouki, M. Ranjbar, A. Hosseinnia, R. Salarian, Application of Taguchi method for optimization of synthetic rutile nano powder preparation from ilmenite concentrate Chem. Eng. Res. Des, 90 (2012).

DOI: 10.1016/j.cherd.2011.07.008

Google Scholar

[48] S.M. Pourmortazavi, M. Rahimi-Nasrabadi, Y. Fazli, M. Mohammad-Zadeh, Taguchi method assisted optimization of electrochemical synthesis and structural characterization of copper tungstate nanoparticles. Int. J. Refract. Met. Hard Mater. 51 (2015).

DOI: 10.1016/j.ijrmhm.2015.02.013

Google Scholar

[49] C.S.R. Silva, G.M. Luz, T.C. Gamboa-Martinez, J.F. Mano, J.L. Gomez-Ribelles, J A. Gomez-Tejedor, Poly(ɛ-caprolactone) Electrospun Scaffolds Filled with Nanoparticles. Production and Optimization According to Taguchi's Methodology. J. Macromol. Sci. B 53 (2013).

DOI: 10.1080/00222348.2013.861304

Google Scholar

[50] H. Albetran, Y. Dong, I.M. Low, Characterization and optimization of electrospun TiO2/PVP nanofibers using Taguchi design of experiment method, J. Asian Ceramic Soc 3 (2015) 292-300. http: /dx. doi. org/10. 1016/j. jascer. 2015. 05. 001.

DOI: 10.1016/j.jascer.2015.05.001

Google Scholar

[51] H.M. Khanlou, B.C. Ang, S. Talebian, M.M. Barzani, M. Silakhori, H. Fauzi, A systematic study of maghemite/PMMA nano-fibrous composite via an electrospinning process: Synthesis and characterization, Measurement 70 (2015) 179-187.

DOI: 10.1016/j.measurement.2015.04.004

Google Scholar

[52] S.L. Zhao, X.H. Wu, L. Wang, Y. Huang, Electrospinning of Ethyl-Cyanoethyl Cellulose/Tetrahydrofuran solutions, J. Appl. Polym. Sci. (2004) 242-246. http: /dx. doi. org/10. 1002/app. 13196.

DOI: 10.1002/app.13196

Google Scholar

[53] J.S. Lee, K.H. Choi, H.D. Ghim, S.S. Kim, D.H. Chun, H.Y. Kim, W.S. Lyoo, Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J. Appl. Polym. Sci. 93 (2004).

DOI: 10.1002/app.20602

Google Scholar

[54] J. Ramis, B. Pajarito, New Solvent System for the Fabrication of Polyvinyl Alcohol – Gelatin Nanofibers via Electrospinning. Adv. Mater. Res. 1125 (2015) 406-410. http: /dx. doi. org/10. 4028/www. scientific. net/AMR. 1125. 406.

DOI: 10.4028/www.scientific.net/amr.1125.406

Google Scholar

[55] X. Yuan, Y. Zhang, C. Dong, J. Sheng, Morphology of ultrafine Polysulfone fibers prepared by electrospinning. Polym. Int. 53 (2005) 1704-1710.

DOI: 10.1002/pi.1538

Google Scholar

[56] J. Matulevicius, L. Kliucininkas, D. Martuzevicius, E. Krugly, M. Tichonovas, J. Baltrusaitis, Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications. J. Nanomater. 2014 (2014).

DOI: 10.1155/2014/859656

Google Scholar

[57] P. Xu, W. Li, H. Zhou, F. Pan, H. Xing, H. Liu, Investigations of the structural evolution of electrospun nanofibers using atomic force microscopy. RSC Adv. 2 (2012) 11104. http: /dx. doi. org/10. 1039/C2RA20146A.

DOI: 10.1039/c2ra20146a

Google Scholar

[58] J. Zhang, C. Cohn, W. Qiu, Z. Zha, Z. Dai, X. Wu, Atomic force microscopy of electrospun organic-inorganic lipid nanofibers, Appl. Phys. Lett. 99 (2011) 103702. http: /dx. doi. org/10. 1063/1. 363578357.

DOI: 10.1063/1.3635783

Google Scholar

[59] Z.R. Lazic, Design of Experiments in Chemical Engineering: A Practical Guide. Wiley, New Jersey, (2004).

Google Scholar

[60] B. Pajarito, Effect of ingredient loading on vulcanization characteristics of a natural rubber compound. Adv. Mater. Res. 1125 (2015) 50-54 http: /dx. doi. org/10. 4028/www. scientific. net/AMR. 1125. 50.

DOI: 10.4028/www.scientific.net/amr.1125.50

Google Scholar

[61] J. Arabit, B. Pajarito, Effect of ingredient loading on surface migration of additives in a surfactant-loaded natural rubber vulcanizate. Adv. Mater. Res. 1125 (2015) 64-68. http: /dx. doi. org/10. 4028/www. scientific. net/AMR. 1125. 64.

DOI: 10.4028/www.scientific.net/amr.1125.64

Google Scholar

[62] B. Pajarito, C. de Torres, M. Maningding, Effect of ingredient loading on surface migration kinetics of additives in vulcanized natural rubber compounds. Sci. Diliman 26. 2 (2014).

Google Scholar

[63] V. Merkle, W. Xiaoyi, Coaxial electrospinning of gelatin/polyvinyl alcohol composite nanofibers and evaluation of their material properties. Bioeng. Conf. (NEBEC), 2012 38th Annual Northeast (2012).

DOI: 10.1109/nebc.2012.6207123

Google Scholar

[64] A. Saxena, A. Tahir, M. Kaloti, J. Ali, H.B. Bohidar, Effect of agar—gelatin compositions on the release of salbutamol tablets, Int. J. Pharm. Investig. 1 (2011) 93-98. http: /dx. doi. org/10. 4103/2230-973X. 82407.

DOI: 10.4103/2230-973x.82407

Google Scholar

[65] S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, Z. Ma, An introduction to Electrospinning and Nanofibers, World Scientific Publishing, Singapore, (2005).

Google Scholar

[66] X.H. Zhong, K.S. Kim, D.F. Fang, S.F. Ran, B.S. Hsiao, B. Chu, Structure and process relationship of electrospun bioresorbable nanofiber membranes, Polym. (2002) 4403-4412. http: /dx. doi. org/10. 1016/S0032-3861(02)00275-6.

DOI: 10.1016/s0032-3861(02)00275-6

Google Scholar

[67] C.S. Ki, D.H. Baek, K.D. Gang, K.H. Lee, I.C. Um, Y.H. Park, Characterization of gelatin nanofiber prepared from gelatin–formic acid solution, Polym. 2005; 46: 5094-5102. http: /dx. doi. org/10. 1016/j. polymer. 2005. 04. 040.

DOI: 10.1016/j.polymer.2005.04.040

Google Scholar

[68] S.Y. Chew, J. Wen, E.K.F. Yim, K.W. Leong, Sustained Release of Proteins from Electrospun Biodegradable Fibers, Biomacromol. 6 (2005) 2017-2024. http: /dx. doi. org/10. 1021/bm0501149.

DOI: 10.1021/bm0501149

Google Scholar

[69] S. Wongsasulak, M. Patapeejumruswong, J. Weiss, P. Supaphol, T. Yoovidhya, Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. J. Food Eng. 98 (2010).

DOI: 10.1016/j.jfoodeng.2010.01.014

Google Scholar

[70] S. Singh, S.G. Lakshmi, M. Vijayakumar, Effect of Process Parameters on the Microstructural Characteristics of Electrospun Poly(Vinyl Alcohol) Fiber Mats. Nanobiotechnol. 5 (2009) 10-16.

DOI: 10.1007/s12030-009-9027-3

Google Scholar

[71] D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending Instability of electrically charged liquids of polymer soltions in electrospinning. J. Appl. Phys. (2000) 4531-4547. http: /dx. doi. org/10. 1063/1. 373532.

DOI: 10.1063/1.373532

Google Scholar

[72] E.J. Robinette, G. Palmese, Improving the fracture toughness of vinyl ester composites using electrospun interlaminar layers. Proc. Joint Am. Soc. Compos. / Am. Soc. Test. Mater. Committee D30 - Nineteenth Tech. Conf. (2005) 42-75.

Google Scholar