Stereometric Parameters of Butterfly Wings

Article Preview

Abstract:

This paper analyses the data stereometric of three samples obtained using the atomic force microscope. The data concern the two butterfly species: Euploea mulciber (known as “Striped Blue Crow”) and Morpho didius (also named as “Giant Blue Morpho”). These species have a strong correlation color wings of the angle of incidence of light. This is structural coloration and it depends on the surface topography. Here we present a method for the topography evaluation. A script created in Matlab software version R2012 by MathWorks® was used for segmentation data stereometric and analysis of localized motifs occurring on the surface of the samples. An analysis of the data using stereometric software MountainsMap® Premium version 7.3.7746 by Digital Surf was made to compare the results obtained using the script developed in Matlab, for identification of all sorts of motifs, such as peaks, pits, or irregular shapes in correlation with the surface statistical parameters. The analysis of motifs is essential when choosing the appropriate technique for imaging the 3-D (three-dimensional) microtextured features of butterfly wings surfaces. This stereometric analysis proves to be an effective method that can be successfully used for estimation of micro- and nano- topography by processing of AFM data

You might also be interested in these eBooks

Info:

Pages:

1-10

Citation:

Online since:

March 2017

Export:

Price:

* - Corresponding Author

[1] F. Mika, J. Matějková-Plšková, S. Jiwajinda, P. Dechkrong, M. Shiojiri, Photonic Crystal Structure and Coloration of Wing Scales of Butterflies Exhibiting Selective Wavelength Iridescence. Materials 5 (2012) 754-771.

DOI: 10.3390/ma5050754

Google Scholar

[2] Sh. Niu, B. Li, Zh. Mu, M. Yang, J. Zhang, Zh. Han, L. Ren, Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review. J. Bionic Eng. 12 (2015) 170–189.

DOI: 10.1016/s1672-6529(14)60111-6

Google Scholar

[3] Ş. Ţălu, Micro and nanoscale characterization of three dimensional surfaces. Basics and applications. Napoca Star Publishing House, Cluj-Napoca, Romania, (2015).

Google Scholar

[4] J.A. Adam, Mathematics in Nature: Modeling Patterns in the Natural World, Princeton University Press, USA, (2003).

Google Scholar

[5] J.G. Kingsolver, Butterfly Engineering. Sci. Am. 253, 2 (1985) 106-113.

Google Scholar

[6] A. Gruverman, B.J. Rodriguez, S.V. Kalinin, Nanoscale electromechanical and mechanical imaging of butterfly wings by Scanning Probe Microscopy, JSPM, 1, 2 (2006) 74-78.

DOI: 10.1166/jspm.2006.008

Google Scholar

[7] L.P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G.I. Mark, Z.E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse, J. -P. Vigneron, Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair. Phys. Rev. E, 67, 2 (2003).

DOI: 10.1103/physreve.67.021907

Google Scholar

[8] J. Zhang, Y. Liang, J. Mao, X. Yang, Zh. Cui, Sh. Zhu, Zh. Li, 3D microporous Co3O4-carbon hybrids biotemplated from butterfly wings as high performance VOCs gas sensor. Sensor Actuat. B-Chem. 235 (2016) 420–431.

DOI: 10.1016/j.snb.2016.05.081

Google Scholar

[9] K. Liu, A. Vitae, L. Jiang, Bio-inspired design of multiscale structures for function integration. NanoToday 6, 2 (2011) 155–175.

Google Scholar

[10] T. Alieva, F. Agullo-Lopez, Optical wave propagation of fractal fields. Opt. Commun. 124 (1996) 267-274.

DOI: 10.1016/0030-4018(95)00702-4

Google Scholar

[11] Ş. Ţălu, Mathematical methods used in monofractal and multifractal analysis for the processing of biological and medical data and images. Anim. Biol. Anim. Husb., 4, 1 (2012) 1-4.

Google Scholar

[12] Ş. Ţălu, Texture analysis methods for the characterisation of biological and medical images. Extreme Life, Biospeology & Astrobiology, 4, 1 (2012) 8-12.

Google Scholar

[13] R. Jovani, L. Perez-Rodrıguez, F. Mougeot, Fractal geometry for animal biometrics: a response to Kuhl and Burghardt. Trends Ecol. Evol. 28 (2013) 499-500.

DOI: 10.1016/j.tree.2013.06.004

Google Scholar

[14] L. Perez-Rodriguez, R. Jovani, F. Mougeot, Fractal geometry of a complex plumage trait reveals bird's quality, P Roy. Soc. Edinb. B 280 (2013) 1755.

DOI: 10.1098/rspb.2012.2783

Google Scholar

[15] A.A. Castrejón-Pita, A. Sarmiento-Galán, J.R. Castrejón-Pita, R. Castrejón-García, Fractal Dimension in Butterflies' Wings: a novel approach to understanding wing patterns? J. Math. Biol., 50, 5 (2005) 584-594.

DOI: 10.1007/s00285-004-0302-6

Google Scholar

[16] D. Dallaeva, P. Tomanek, AFM study of structure influence on butterfly wings coloration, AEEE 10, 2 (2012) 120-124.

DOI: 10.15598/aeee.v10i2.616

Google Scholar

[17] D. Dallaeva, Sh. Ramazanov, E. Prokopyeva, P. Kaspar, P. Tománek, AFM Imaging of natural optical structures. AEEE 12, 6 (2014) 639-644.

DOI: 10.15598/aeee.v12i6.1185

Google Scholar

[18] MathWorks® documentation for Matlab, http: /www. mathworks. com/help.

Google Scholar

[19] MountainsMap® 7 Software (Digital Surf, Besançon, France). Available from: http: /www. digitalsurf. fr (last accessed February 10th, 2017).

Google Scholar

[20] S. Stach, Ż. Garczyk, Ş. Ţălu, S. Solaymani, A. Ghaderi, R. Moradian, B. Nezafat Negin, S.M. Elahi, H. Gholamali, Stereometric Parameters of the Cu/Fe NPs Thin Films, J. Phys. Chem. C, 119, 31 (2015) 17887-17898. DOI: 10. 1021/acs. jpcc. 5b04676.

DOI: 10.1021/acs.jpcc.5b04676

Google Scholar

[21] S. Stach, W. Sapota, Ş. Ţălu, A. Ahmadpourian, C. Luna, N. Ghobadi, A. Arman, M. Ganji, 3-D surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures, J Mater Sci: Mater. Electron, 28, 2 (2017).

DOI: 10.1007/s10854-016-5774-9

Google Scholar

[22] R. Leach, Characterisation of Areal Surface Texture, Springer, Berlin, (2013).

Google Scholar