Stress Distribution of the Variable Dynamic Loading in the Dental Implant: A Three-Dimensional Finite Element Analysis

Article Preview

Abstract:

Stable osseointegration between implant threads and the surrounding marginal bone provides the mechanical base of an implant for daily chewing activity. The contact area of implant-bone interfaces and the concentrated stresses on the marginal bones are principal concerns of implant designers. In this work we numerically analyze by the finite element method the distribution of the equivalent stress and their level in the bone the most fragile element of the dental prosthesis. Each set of the model contained a crown, framework, abutment, implant and bone, subjected to variable dynamic loading according to time.

You might also be interested in these eBooks

Info:

Pages:

44-52

Citation:

Online since:

March 2017

Export:

Price:

* - Corresponding Author

[1] O. Abu-Hammad, A. Khraisat, N. Dar-Odeh, D.C. Jagger, C.H. Hammerle, The staggered installation of dental implants and its effect on bone stresses, Clin. Implant. Dent. Relat. Res, 9(2007), 121–127.

DOI: 10.1111/j.1708-8208.2007.00055.x

Google Scholar

[2] A. Wennerberg, T. Albrektsson, Current challenges in successful rehabilitation with oral implants, J. Oral Rehabil, 38(2011), 286–294.

DOI: 10.1111/j.1365-2842.2010.02170.x

Google Scholar

[3] C. L. Lin, Y. H. Lin, S. H. Chang, Multi-factorial analysis of variables influencing the bone loss of an implant placed in the maxilla: prediction using FEA and SED bone remodeling algorithm, J. Biomech, 43(2010a), 644–651.

DOI: 10.1016/j.jbiomech.2009.10.030

Google Scholar

[4] D. Lin, Q. Li, W. Li, N. Duckmanton, M. Swain, Mandibular bone remodeling induced by dental implant, J. Biomech, 43(2010b), 287–293.

DOI: 10.1016/j.jbiomech.2009.08.024

Google Scholar

[5] C.J. Goodacre, G. Bernal, K. Rungcharassaeng, J.Y.K. Kan, Clinical complications with implants and implant prostheses, J. Prosthet. Dent, 90(2003), 121–132.

DOI: 10.1016/s0022-3913(03)00212-9

Google Scholar

[6] D. Manfredini, C.E. Poggio, F. Lobbezoo, Is bruxism a risk factor for dental implants. A systematic review of the literature, Clin. Implant Dent. Relat. Res., http: /dx. doi. org/10. 1111/cid. 12015(2012).

DOI: 10.1111/cid.12015

Google Scholar

[7] S. Ryuji, Y. Nobuhiro, O. Toru, K. Tetsuo, G. Yoshinori, Y. Yamakawa, K. Ikeda, K. Sasaki, Biological data based finite element stress analysis of mandibular bone with implant-supported overdenture, J. Computers in Biology and Medicine, 54(2014).

DOI: 10.1016/j.compbiomed.2014.08.018

Google Scholar

[8] Będzinski, R. et al, Biomechanical Engineering, Publishing House Technical University of Wroclaw(1997), Wroclaw.

Google Scholar

[9] C. N. Elias, F. A. Rocha, A. L. Nascimento, P. G. Coelho, Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants, Journal of the mechanical behavior of biomedical materials, 16(2012).

DOI: 10.1016/j.jmbbm.2012.10.010

Google Scholar

[10] D. F. Almeida, D. A. Pellizzer, E. P. Verri, F.R. Santiago Jr., P.S. de Carvalho, Influence of tapered and external hexagon connections on bone stresses around tilted dental implants: three-dimensional finite element method with statistical analysis, J. Periodontol, 85(2014).

DOI: 10.1902/jop.2013.120713

Google Scholar

[11] S. Faegh, S. Müftü, Load transfer along the bone-dental implant interface,. J. Biomech. 43(2010), 1761–1770.

DOI: 10.1016/j.jbiomech.2010.02.017

Google Scholar

[12] E.P. Pellizzer, F.R. Verri, R.M. Falcón-Antenucci, J.F. Júnior, P.S. de Carvalho, S. L. de Moraes, , P. Y. Noritomi, Stress analysis in platform-switching implants: a 3-dimensional finite element study,. J. Oral Implantol. 38 (2012), 587–594.

DOI: 10.1563/aaid-joi-d-10-00041

Google Scholar

[13] H.H. Chou, S. Müftü, Simulation of peri-implant bone healing due to immediate loading in dental implant treatments,. J. Biomech. 46 (2013), 871–878.

DOI: 10.1016/j.jbiomech.2012.12.023

Google Scholar

[14] H. Chang, Y. Chen, Y. Hsieh, M. Hsu, Stress distribution of two commercial dental implant systems: A three-dimensional finite element analysis,. Journal of Dental Sciences, 8(2013), 261-271.

DOI: 10.1016/j.jds.2012.04.006

Google Scholar

[15] R. V. Fellippo, et al, Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test,. Journal of Biomechanics, 48(2015), 138-145.

DOI: 10.1016/j.jbiomech.2014.10.021

Google Scholar

[16] J. Li, H. Li, L. Shi, et al, A mathematical model for simulating the bone remodeling process under mechanical stimulus,. Dent Mater, 23(2007), 1073-8.

Google Scholar

[17] HY. Chou, JJ. Jagodnik, S. Muftu, Predictions of bone remodeling around dental implant systems,. J. Biomech, 41(2008), 1365-73.

DOI: 10.1016/j.jbiomech.2008.01.032

Google Scholar

[18] HH. Ammar, P. Ngan, RJ. Crout, VH. Mucino, OM. Mukdadi, Three dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement,. Am J OrthodDentofacialOrthop, 139(2011), 59-71.

DOI: 10.1016/j.ajodo.2010.09.020

Google Scholar

[19] C. Field, Q. Li, W. Li, M. Thompson, M. Swain, Prediction of mandibular bone remodeling induced by fixed partial dentures,. J. Biomech, 43(2010), 1771-9.

DOI: 10.1016/j.jbiomech.2010.02.016

Google Scholar

[20] C. Field, Q. Li, W. Li, M. Thompson, M. Swain, A comparative mechanical and bone remodeling study of all-ceramic posterior inlay and onlay fixed partial dentures,. J. Dent, 40(2012), 48-56.

DOI: 10.1016/j.jdent.2011.10.003

Google Scholar

[21] I. Hasan, A. Rahimi, L. Keilig, KT. Brinkmann, C. Bourauel, Computational simulation of internal bone remodeling around dental implants: a sensitivity analysis,. Comput Methods Biomech Biomed Engin 15(2012), 807-14.

DOI: 10.1080/10255842.2011.561793

Google Scholar

[22] C. Wang, L. Wang, X. Liu, Y. Fan, Numerical simulation of the remodeling process of trabecular architecture around dental implants,. Comput Methods Biomech Biomed Engin, 17(2014), 286-95.

DOI: 10.1080/10255842.2012.681646

Google Scholar

[23] N. Djebbar, B. Serier, B. BachirBouiadjra, Finite element analysis in static and dynamic behaviors of dental prosthesis,. Structural Engineering and Mechanics, 55(2015), 65-78.

DOI: 10.12989/sem.2015.55.1.065

Google Scholar

[24] N. Djebbar, B. Serier, B. BachirBouiadjra, S. Benbarek, A. Drai, Analysis of the effect of load direction on the stress distribution in dental implant,. Materials and Design, 31(2010), 2097–2101.

DOI: 10.1016/j.matdes.2009.10.042

Google Scholar

[25] O. Kayabasi, E. Yuzbasioglu, F. Erzincanli, Static, dynamic and fatigue behaviours of dental implant using finite element method, AdvEngSoftw, 37(2006), 58-649.

Google Scholar

[26] Z. Miller, MB. Fuchs, M. Arcan, Trabecular bone adaptation with an orthotropic material model, J. Biomech, 35(2002), 247–56.

DOI: 10.1016/s0021-9290(01)00192-0

Google Scholar

[27] F. Lofaj, J. Kučera, D. Németh, L. Kvetková, Finite element analysis of stress distributions in mono and bi-cortical dental implants,. Materials Science and Engineering C, 50(2015), 85-96.

DOI: 10.1016/j.msec.2015.01.095

Google Scholar

[28] C. Wang, G. Fu, F. Deng, Difference of natural teeth and implant-supported restoration: A comparison of bone remodeling simulations,. Journal of Dental Sciences, 14(2015), 1-11.

DOI: 10.1016/j.jds.2014.11.001

Google Scholar