Regeneration Mechanism of Full Thickness Cartilage Defect Using Combination of Freeze Dried Bovine Cartilage Scaffold - Allogenic Bone Marrow Mesenchymal Stem Cells - Platelet Rich Plasma Composite (SMPC) Implantation

Article Preview

Abstract:

Cartilage defect has become serious problem for orthopaedic surgeon and patients because of its difficult healing that might occur when articular cartilage damage never reach subchondral layer. In this study, we used combination of freeze dried bovine cartilage (FDBC) scaffold, bone marrow mesenchymal stem cells (BM-MSCs), and platelet rich plasma (PRP) composite (SMPC) implanted in full thickness cartilage defect. This study is to explain its regeneration mechanism. This is true experimental research with post-test only control group design using New Zealand White Rabbit. 50 rabbits is divided into three groups of SMPC, BM-MSCs and FDBC. 37 rabbits evaluated after twelve weeks. Histopathologic examination showed the number of chondrocytes, collagen thickness and cartilage width are highest on SMPC group. Immunohistochemical examination showed SMPC group has the highest number of chondroprogenitor cells express FGF-2R, Sox-9, and MAPK. Brown Forsythe test resulted in significant increase the number of chondrocytes (p=0,010), collagen thickness (p=0,000), and cartilage surface width (p=0,015), and increase FGF-2R (p=0,000), MAPK (p=0,000), and Sox-9 (p=0,000) on SMPC group. Using path analysis, there is strong influence from FGF-2R, MAPK, and Sox-9 to the increase of chondrocytes, collagen thickness, and cartilage surface width. Hence, SMPC implantation mechanism of full thickness cartilage defect regeneration can be explained.

You might also be interested in these eBooks

Info:

Pages:

70-82

Citation:

Online since:

March 2017

Export:

* - Corresponding Author

[1] Mononen M. E, Mikkola M. T, Julkunen P, Ojala R, Nieminen M. T, Jurvelin J. S, Korhonen R.K. 2012. Effect of Superficial Collagen Patterns and Fibrillation of Femoral Articular Cartilage on Knee Joint Mechanics-A 3D Finite Element Analysis. J Biomech. pp.579-87.

DOI: 10.1016/j.jbiomech.2011.11.003

Google Scholar

[2] Athanasiou K. A, Shah A. R, Hernandez R.J. 2002. Basic Science of Articular Cartilage Repair. J. Clin Sport Me, 39 (4), p.223–47.

Google Scholar

[3] Buckwalter J. A, Mankin H. J, Grodzinsky A.J. 2005. Articular Cartilage and Osteoarthritis. Instr Course Lect, 54, p.465–80.

Google Scholar

[4] Williams III Riley J, Feeley Brian T, Bedi Askeesh. 2010. Management of Articular Cartilage Defect of The Knee. J. Bone Joint Surg Am, 92, p.994–1009.

DOI: 10.2106/jbjs.i.00895

Google Scholar

[5] Chen F. H, Song Li, Mauck R. I, Li W.J. 2007. Mesenchymal Stem Cells. In: Lanza R, Langer R, Vacanti J eds. Principles of Tissue Engineering. 3rd Edition. London: Elsevier Academic Press, p.823–843.

DOI: 10.1016/b978-012370615-7/50059-7

Google Scholar

[6] Getgood. 2009. Articular Cartilage Tissue Engineering: Today's Research, Tomorrow Practice? J. Bone and Joint Surgery, 91 (5), pp.565-576.

DOI: 10.1302/0301-620x.91b5.21832

Google Scholar

[7] Gikas P. D, Aston W. J, Briggs T.W. 2008. Autologous Chondrocyte Implantation: Where Do We Stand Now? J Orthop Sci, 13, p.283–92.

DOI: 10.1007/s00776-007-1228-9

Google Scholar

[8] Williams R.J. 2006. Articular Cartilage Repair: Clinical Approach and Decision Making. In: Williams R. J ed. Operative Tehniques in Orthopaedics. New York: Elsevier Inc, p.218–226.

DOI: 10.1053/j.oto.2006.09.002

Google Scholar

[9] Wakitani S, Kawaguchi A, Tokuhara Y, Takaoka K. 2008. Present Status and Future Direction for Cartilage Repair. 26, Pp. 115–22.

DOI: 10.1007/s00774-007-0802-8

Google Scholar

[10] Steinert A. F, Ghivizzani S. C, Rethwilm A, Tuan R. S, Evans C. H, Noth U. 2007. Major Biological Obstacles for Persistent Cell-Based Regeneration of Articular Cartilage. Arthritis Research and Therapy, Vol 9, p.213–28.

DOI: 10.1186/ar2195

Google Scholar

[11] Koga H, Engebretsen L, Brinchmann J. E, Muneta T, Sekiya K. 2009. Mesenchymal Stem Cell-Based Therapy for Cartilage Repair: A Review. 17, p.1289–97.

DOI: 10.1007/s00167-009-0782-4

Google Scholar

[12] Nho S. J, Foo L. F, Green D.M. 2008. Magnetic Resonance Imaging and Clinical Evaluation of Patellar Resurfacing with Press-Fit Osteochondral Autograft Plugs. Am J Sports Med, 36 (6), p.1101–9.

DOI: 10.1177/036354650831441

Google Scholar

[13] Reddi A.H. 2003. Cartilage Morphogenetic Proteins: Role in Joint Development, Homoeostasis, and Regeneration. Ann Rheum Dis, Vol 62, pp.73-78.

DOI: 10.1136/ard.62.suppl_2.ii73

Google Scholar

[14] Ornitz D.M. 2005. FGF Signaling in The Developing Endochondral Skeleton. Cytokine & Growth Factor Reviews, 16, p.205–13.

DOI: 10.1016/j.cytogfr.2005.02.003

Google Scholar

[15] Hoffman A, Stefen C, Christian K, Dietmar B, Hubert M, Yoram Z, Gadi T, Gadi P, Hou Q, DeBank P. A, Shakesheff K.M. 2004. Injectable Scaffolds for Tissue Regeneration. Journal of Materials Chemistry, 14, p.1915-(1923).

Google Scholar

[16] Yusbida A, Dwikora N.U. 2012. Cytotoxic Effect of Freeze Dried Bovine Scaffold and Platelet Rich Plasma on Mesenchymal Stem Cells in Cartilage Tissue Engineering. Airlangga University.

DOI: 10.20473/joints.v6i2.2017.63-70

Google Scholar

[17] Simman R, Hoffmann A, Bohinc R. J, Peterson W. C, Russ A.J. 2008. Role of Platelet-Rich Plasma in Acceleration of Bone Fracture Healing. Ann Plast Surg, 61, p.337–344.

DOI: 10.1097/sap.0b013e318157a185

Google Scholar

[18] Shapiro F, Koide S, Glimcher. 1993. Cell Origin and Differentiation in The Repair of Full Thickness Defect of Articular Cartilage.

DOI: 10.2106/00004623-199304000-00009

Google Scholar

[19] Junji. 2009. Clinical Application of Scaffolds for Cartilage Tissue Engineering. Knee Surgeon Sports Traumatology Arthoscopy, 17, p.561–577.

Google Scholar

[20] Niswander L. 2002. Interplay Between The Molecular Signals That Control Vertebrate Limb Development. The International Journal of Developmental Biology, 46, p.877–81.

Google Scholar

[21] Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. 2002. Human Autologous Culture Expanded Bone Marrow Mesenchymal Cell Transplantation for Repair of Artilage Defects in Osteoarthritic Knees. Osteoarthritis Cartilage. p.199–206.

DOI: 10.1053/joca.2001.0504

Google Scholar

[22] Dwikora, Sasetia D. R, Taufik A, Rofi'i, Sadabaskara, Bembie R, Yusbhida A, Adi G. 2011. Freeze Dried Bovine Cartilage Powder as An Alternative Scaffold for Cartilage Defect. International Symposia of Stem Cell and Tissue Bank, Surabaya.

Google Scholar