Eggshell Membrane Protein Modified Silk Fibroin-Poly Vinyl Alcohol Scaffold for Bone Tissue Engineering: In Vitro and In Vivo Study

Article Preview

Abstract:

There is a need for high performance scaffold in tissue engineering. Keeping this perspective in mind, the present study delineates the preparation and physico-chemical characterization of soluble eggshell protein (SEP) modified silk fibroin (SF)-polyvinyl alcohol (PVA) scaffold and its application in bone tissue engineering. The SF/PVA scaffold were prepared by salt leaching and modified with eggshell protein. Micro-architechture and porosity analysis revealed that all the scaffolds were having desired pore size (230-360 µm), interconnected porous network and 90% porosity. The scaffolds were found with suitable swelling behavior and biodegradability to support cell proliferation till replaces native osseous tissue. In vitro cyto-compatibility and differentiation study showed that SEP(SF-PVA) supports viability , proliferation and differentiation of cord blood derived human mesenchymal stem cell. Further, in vivo study in mice model showed that the scaffolds are non-immunogenic and support tissue growth. In conclusion, SEP modified SF-PVA scaffold could be a better option for tissue engineering.

You might also be interested in these eBooks

Info:

Pages:

69-81

Citation:

Online since:

May 2017

Export:

Price:

* - Corresponding Author

[1] R. Langer, J.P. Vacanti, Microscale technologies for tissue engineering and biology, Science, 260 (1993).

Google Scholar

[2] A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Microscale technologies for tissue engineering and biology, Proc. Natl. Acad. Sci. U. S. A., 103 (2006) 2480–2487.

DOI: 10.1073/pnas.0507681102

Google Scholar

[3] F. Rosso, G. Marino, A. Giordano, M. Barbarisi, D. Parmeggiani, A. Barbarisi, Smart materials as scaffolds for tissue engineering, J. Cell. Physiol., 203 (2005) 465–470.

DOI: 10.1002/jcp.20270

Google Scholar

[4] Y. Gotoh, N. Minoura, T. Miyashita, Preparation and characterization of conjugates of silk fibroin and chitooligosaccharides, Colloid Polym. Sci., 280 (2002) 562–568.

DOI: 10.1007/s00396-002-0658-3

Google Scholar

[5] G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials, Biomaterials, 24 (2003) 401–416.

DOI: 10.1016/s0142-9612(02)00353-8

Google Scholar

[6] C. -H. Du, B. -K. Zhu, J. -Y. Chen, Y. -Y. Xu, Metal ion permeation properties of silk fibroin/chitosan blend membranes, Polym. Int., 55 (2006) 377–382.

DOI: 10.1002/pi.1995

Google Scholar

[7] A.S. Gobin, V.E. Froude, A.B. Mathur, Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration, J. Biomed. Mater. Res. A, 74 (2005) 465–473.

DOI: 10.1002/jbm.a.30382

Google Scholar

[8] H. Kweon, M.K. Yoo, I.K. Park, T.H. Kim, H.C. Lee, H. -S. Lee, J. -S. Oh, T. Akaike, C. -S. Cho, A novel degradable polycaprolactone networks for tissue engineering, Biomaterials, 24 (2003) 801–808.

DOI: 10.1016/s0142-9612(02)00370-8

Google Scholar

[9] H.S. Mansur, H.S. Costa, Nanostructured poly (vinyl alcohol)/bioactive glass and poly (vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications, Chem. Eng. J., 137 (2008) 72–83.

DOI: 10.1016/j.cej.2007.09.036

Google Scholar

[10] H.S. Mansur, R.L. Oréfice, A.A. Mansur, Characterization of poly (vinyl alcohol)/poly (ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy, Polymer, 45 (2004) 7193–7202.

DOI: 10.1016/j.polymer.2004.08.036

Google Scholar

[11] T. Yamaoka, Y. Tabata, Y. Ikada, Comparison of body distribution of poly(vinyl alcohol) with other water-soluble polymers after intravenous administration, J. Pharm. Pharmacol., 47 (1995) 479–486.

DOI: 10.1111/j.2042-7158.1995.tb05835.x

Google Scholar

[12] Y. Huang, S. Onyeri, M. Siewe, A. Moshfeghian, S.V. Madihally, In vitro characterization of chitosan–gelatin scaffolds for tissue engineering, Biomaterials, 26 (2005) 7616–7627.

DOI: 10.1016/j.biomaterials.2005.05.036

Google Scholar

[13] S. Hofmann, H. Hagenmüller, A.M. Koch, R. Müller, G. Vunjak-Novakovic, D.L. Kaplan, H.P. Merkle, L. Meinel, Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds, Biomaterials, 28 (2007).

DOI: 10.1016/j.biomaterials.2006.10.019

Google Scholar

[14] L. Meinel, S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, G. Vunjak-Novakovic, Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds, Biotechnol. Bioeng., 88 (2004) 379–391.

DOI: 10.1002/bit.20252

Google Scholar

[15] M. Li, S. Lu, Z. Wu, K. Tan, N. Minoura, S. Kuga, Structure and properties of silk fibroin–poly (vinyl alcohol) gel, Int. J. Biol. Macromol., 30 (2002) 89–94.

DOI: 10.1016/s0141-8130(02)00007-7

Google Scholar

[16] L. Dai, J. Li, E. Yamada, Effect of glycerin on structure transition of PVA/SF blends, J. Appl. Polym. Sci., 86 (2002) 2342–2347.

DOI: 10.1002/app.11260

Google Scholar

[17] T. Tanaka, T. Tanigami, K. Yamaura, Phase separation structure in poly (vinyl alcohol)/silk fibroin blend films, Polym. Int., 45 (1998) 175–184.

DOI: 10.1002/(sici)1097-0126(199802)45:2<175::aid-pi883>3.0.co;2-k

Google Scholar

[18] T. Tanaka, M. Suzuki, N. Kuranuki, T. Tanigami, K. Yamaura, Properties of Silk Fibroin/Poly (vinyl alcohol) Blend Solutions and Peculiar Structure Found in Heterogeneous Blend Films*, Polym. Int., 42 (1997) 107–111.

DOI: 10.1002/(sici)1097-0126(199701)42:1<107::aid-pi686>3.0.co;2-9

Google Scholar

[19] M. Tsukada, G. Freddi, J.S. Crighton, Structure and compatibility of poly (vinyl alcohol)-silk fibroin (PVA/SA) blend films, J. Polym. Sci. Part B Polym. Phys., 32 (1994) 243–248.

DOI: 10.1002/polb.1994.090320205

Google Scholar

[20] E. Ohto-Fujita, T. Konno, M. Shimizu, K. Ishihara, T. Sugitate, J. Miyake, K. Yoshimura, K. Taniwaki, T. Sakurai, Y. Hasebe, others, Hydrolyzed eggshell membrane immobilized on phosphorylcholine polymer supplies extracellular matrix environment for human dermal fibroblasts, Cell Tissue Res., 345 (2011).

DOI: 10.1007/s00441-011-1172-z

Google Scholar

[21] M.K. Sah, K. Pramanik, Soluble-eggshell-membrane-protein-modified porous silk fibroin scaffolds with enhanced cell adhesion and proliferation properties, J. Appl. Polym. Sci., 131 (2014).

DOI: 10.1002/app.40138

Google Scholar

[22] M.K. Sah, K. Pramanik, Regenerated silk fibroin from B mori silk cocoon for tissue engineering applications, Int. J. Environ. Sci. Dev., 1 (2010) 404–408.

DOI: 10.7763/ijesd.2010.v1.78

Google Scholar

[23] U. -J. Kim, J. Park, H.J. Kim, M. Wada, D.L. Kaplan, Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin, Biomaterials, 26 (2005) 2775–2785.

DOI: 10.1016/j.biomaterials.2004.07.044

Google Scholar

[24] N. Shanmugasundaram, P. Ravichandran, P.N. Reddy, N. Ramamurty, S. Pal, K.P. Rao, Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells, Biomaterials, 22 (2001) 1943–(1951).

DOI: 10.1016/s0142-9612(00)00220-9

Google Scholar

[25] A.P. Wilson, Cytotoxicity and viability assays, Anim. Cell Cult. Pract. Approach, 3 (2000) 175–219.

Google Scholar

[26] A.H. Cory, T.C. Owen, J.A. Barltrop, J.G. Cory, Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture, Cancer Commun., 3 (1991) 207–212.

DOI: 10.3727/095535491820873191

Google Scholar

[27] J.R. Mauney, C. Kirker-Head, L. Abrahamson, G. Gronowicz, V. Volloch, D.L. Kaplan, Matrix-mediated retention of in vitro osteogenic differentiation potential and in vivo bone-forming capacity by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion, J. Biomed. Mater. Res. A, 79 (2006).

DOI: 10.1002/jbm.a.30876

Google Scholar

[28] H. Jung, B. Kwak, H.S. Yang, G. Tae, J. -S. Kim, K. Shin, Attachment of cells to poly (styrene-co-acrylic acid) thin films with various charge densities, Colloids Surf. Physicochem. Eng. Asp., 313 (2008) 562–566.

DOI: 10.1016/j.colsurfa.2007.05.070

Google Scholar

[29] I.C. Um, H. Kweon, Y.H. Park, S. Hudson, Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid, Int. J. Biol. Macromol., 29 (2001) 91–97.

DOI: 10.1016/s0141-8130(01)00159-3

Google Scholar

[30] X. Zhang, C. Cao, X. Ma, Y. Li, Optimization of macroporous 3-D silk fibroin scaffolds by salt-leaching procedure in organic solvent-free conditions, J. Mater. Sci. Mater. Med., 23 (2012) 315–324.

DOI: 10.1007/s10856-011-4476-3

Google Scholar

[31] F. Lin, Y. Li, J. Jin, Y. Cai, K. Wei, J. Yao, Deposition behavior and properties of silk fibroin scaffolds soaked in simulated body fluid, Mater. Chem. Phys., 111 (2008) 92–97.

DOI: 10.1016/j.matchemphys.2008.03.019

Google Scholar

[32] T. Wang, M. Turhan, S. Gunasekaran, Selected properties of pH-sensitive, biodegradable chitosan–poly (vinyl alcohol) hydrogel, Polym. Int., 53 (2004) 911–918.

DOI: 10.1002/pi.1461

Google Scholar

[33] D. -A. Wang, C.G. Williams, F. Yang, J.H. Elisseeff, Enhancing the Tissue-Biomaterial Interface: Tissue-Initiated Integration of Biomaterials, Adv. Funct. Mater., 14 (2004) 1152–1159.

DOI: 10.1002/adfm.200305018

Google Scholar

[34] S. -H. Park, E.S. Gil, H.J. Kim, K. Lee, D.L. Kaplan, Relationships between degradability of silk scaffolds and osteogenesis, Biomaterials, 31 (2010) 6162–6172.

DOI: 10.1016/j.biomaterials.2010.04.028

Google Scholar