Novel Strontium Doped Zinc Calcium Phosphate Conversion Coating on AZ31 Magnesium Alloy for Biomedical Applications

Article Preview

Abstract:

A simple chemical conversion coating was adopted to deposit zinc calcium phosphate (ZCP) coating and strontium doped ZCP (SZCP) coating on AZ31 magnesium alloy to induce biocompatibility and reduce the degradation rate. The surface morphology, chemical composition and functional groups of the coating were characterized by Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDS), X-Ray Diffraction (XRD) studies and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy respectively. SZCP coating formed at 20 min deposition time produced crack free surface with a high degree of crystallinity with barrier property, which ultimately retards the dissolution of magnesium in Simulated Body Fluid (SBF). The corrosion resistance of AZ31 magnesium alloy was improved by SZCP coating as evident from hydrogen evolution test (HET). Cytotoxicity evaluation with L969 cells showed that Sr doped ZCP coatings showed less toxicity on resorbable magnesium alloys.

You might also be interested in these eBooks

Info:

Pages:

57-67

Citation:

Online since:

October 2017

Export:

Price:

* - Corresponding Author

[1] Guosong Wu, Jamesh Mohammed Ibrahim, Paul K. Chu, Surface design of biodegradable magnesium alloys — A review, Surf. Coat. Tech. 233 (2013) 2–12.

Google Scholar

[2] P. Amaravathy, S. Sathyanarayanan, S. Sowndarya , N. Rajendran, Bioactive HA/TiO2 coating on magnesium alloy for biomedical applications, Ceram. Int. 40 (2014) 6617–6630.

DOI: 10.1016/j.ceramint.2013.11.119

Google Scholar

[3] Harpreet S. Brar, Manu O. Platt, Malisa Sarntinoranont, Peter I. Martin, and Michele V. Manue, Magnesium as a biodegradable and bioabsorbable material for medical Implants, J. Min. Met. Mat. S.  61 (2009) 31-34.

DOI: 10.1007/s11837-009-0129-0

Google Scholar

[4] Xue-Nan Gu, Yu-Feng Zheng, A review on magnesium alloys as biodegradable materials, Front. Mater. Sci. China. 4 (2010) 111–115.

Google Scholar

[5] Nan Li, Yufeng Zheng, Novel Magnesium Alloys Developed for Biomedical Application: A Review, J. Mater. Sci. Technol. 29 (2013) 489-502.

Google Scholar

[6] Hanas. T, T. S. Sampath Kumar, Govindaraj Perumal, and Mukesh Doble, Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating, Materials Science and Engineering C 65 (2016) 43-50.

DOI: 10.1016/j.msec.2016.04.017

Google Scholar

[7] Pil-Ryung Cha, Hyung-Seop Han, Gui-Fu Yang, Yu-Chan Kim, Ki-Ha Hong, Seung-Cheol Lee, Jae-Young Jung, Jae-Pyeong Ahn, Young-Yul Kim, Sung-Youn Cho, Ji Young Byun, Kang-Sik Lee, Seok-Jo Yang and Hyun-Kwang Seok, Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases, Sci. Rep. 3 (2013).

DOI: 10.1038/srep02367

Google Scholar

[8] Marco A. Velasco, Carlos A. Narváez-Tovar and Diego A. Garzón-Alvarado, Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering, BioMed Research International 2015 (2015) 1-21.

DOI: 10.1155/2015/729076

Google Scholar

[9] Maksym pogorielov, Eugenia husak, Alexandr solodivnik, Sergii Zhdanov, Magnesium-based biodegradable alloys: Degradation, application, and alloying elements, Interventional Medicine & Applied Science, Vol. 9 (1), p.27–38 (2017).

DOI: 10.1556/1646.9.2017.1.04

Google Scholar

[10] M S Uddin, Colin Hall and Peter Murphy, Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants, Sci Technol Adv Mater. 16 (2015) 1-24.

DOI: 10.1088/1468-6996/16/5/053501

Google Scholar

[11] T.S.N. Sankara Narayanan, Surface pretreatment by phosphate conversion coatings a review, Rev. Adv. Mater. Sci. 9 (2005) 130-177.

Google Scholar

[12] Tamilselvi, P. Kamaraj, M. Arthanareeswari, S. Devikala, J. Arockia Selvi, Progress in Zinc Phosphate Conversion Coatings: A Review, Int. J. Adv. Chem. Sci. Appl. 3 (2015) 25-41.

DOI: 10.1016/j.apsusc.2015.01.177

Google Scholar

[13] Chen D, He Y, Tao H, Zhang Y, Jiang Y, Zhang X, Zhang S, Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants, Int. J. Mol. Med. 28 (2011) 343-348.

DOI: 10.3892/ijmm.2011.707

Google Scholar

[14] FM. Korkmaz, T. Tüzüner,  O. Baygin,  CK. Buruk, R. Durkan, B. Bagis, Antibacterial activity, surface roughness, flexural strength, and solubility of conventional luting cements containing chlorhexidine diacetate/cetrimide mixtures, J. Prosthet. Dent. 110 (2013).

DOI: 10.1016/s0022-3913(13)60349-2

Google Scholar

[15] Paul W, Sharma CP, Synthesis and characterization of alginate coated zinc calcium phosphate nanoparticles for intestinal delivery of insulin, Process Biochem. 47 (2012) 882-886.

DOI: 10.1016/j.procbio.2012.01.018

Google Scholar

[16] KazuyukiYusa, OsamuYamamoto, HiroshiTakano, Masayuki Fukuda & Mitsuyoshi Iino, Zinc-modified titanium surface enhances osteoblast differentiation of dental pulp stem cells in vitro, scientific reports 6 (2016) 1-11.

DOI: 10.1038/srep29462

Google Scholar

[17] M. Wang, Q. Liu, C. Yang, Y. Zhang, The Impact of Strontium Ranelate on Implant Osseointegration of Osteoporosis In vivo Experiment. Dentistry 6 (2016) 376.

DOI: 10.4172/2161-1122.1000376

Google Scholar

[18] S. Q. Xu, Q. Li, Y. H. Lu, B. Chen & J. M. Fan, Preparation and characterisation of composite double phosphate conversion coatings on AZ91D magnesium alloy, Surf. Eng. 26 (2010) 328-333.

DOI: 10.1179/026708409x364948

Google Scholar

[19] Shinya Horiuchi, Masahiro Hiasa, Akihiro Yasue,  Kazumitsu Sekine, Kenichi Hamada, Kenzo Asaoka, Eiji Tanaka, Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement, J Mech Behav Biomed Mater 29 (2014).

DOI: 10.1016/j.jmbbm.2013.09.005

Google Scholar

[20] In vitro corrosion and biocompatibility of phosphating modified WE43 magnesium alloy Cheng-hong Ye, Ting-fei XI, Yu-feng Zheng, Shu-qin Wang, Yang-de Li, Trans. Nonferrous Met. Soc. China 23 (2013) 996−1001.

DOI: 10.1016/s1003-6326(13)62558-3

Google Scholar

[21] Nguyen Van Phuong, Kyuhwan Lee, Doyon Chang, Man Kim, Sangyeoul Lee, Sungmo Moon, Zinc phosphate conversion coatings on magnesium alloys: A review, Met. Mater. Int 19 (2013).

DOI: 10.1007/s12540-013-2023-0

Google Scholar

[22] Chen H, Zhang E, Yang K, Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application, Mater Sci Eng C Mater Biol Appl. 1 (2014) 201-6.

DOI: 10.1016/j.msec.2013.09.010

Google Scholar

[23] Chengtie Wu, Zetao Chen, Deliang Yi, Jiang Chang, and Yin Xiao, Multidirectional Effects of Sr, Mg and Si Containing Bioceramic Coatings with High Bonding Strength on Inflammation, Osteoclastogenesis and Osteogenesis, Appl. Mater. Interfaces 6 (2014).

DOI: 10.1021/am4060035

Google Scholar

[24] AR Boyd, L. Rutledge, LD. Randolph, BJ. Meenan, Strontium-substituted hydroxyapatite coatings deposited via a co-deposition sputter technique, Mater. Sci. Eng. C (2015) 290-300.

DOI: 10.1016/j.msec.2014.10.046

Google Scholar

[25] Ravi, Narmadha Devi, Rajkamal Balu, and T. S. Sampath Kumar, Strontium substituted calcium deficient hydroxyapatite nanoparticles: Synthesis, characterization, and antibacterial properties, J. American Ceram. Soc. 95 (2012) 2700-2708.

DOI: 10.1111/j.1551-2916.2012.05262.x

Google Scholar

[26] M. Aranyosiova, M. Stancikova, J. Rovensky, D. Velic, Strontium distribution in bones and tissues of strontium ranelate-administrated rats, Surf. Interface Anal. 43 (2011) 306-309.

DOI: 10.1002/sia.3458

Google Scholar

[27] Pierre j. meunier, christian roux, ego seeman, sergio ortolani, janusz e. badurski, tim d. spector, jorge cannata, adam balogh, ernst-martin lemmel, stig pors-nielsen, rené rizzoli, harry k. genant, and jean-yves reginster, the effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis, J. Med. 350 (5) 459-68.

DOI: 10.1056/nejmoa022436

Google Scholar

[28] Yadong Zhang, Xu Cui, Shichang Zhao, Hui Wang, Mohamed N. Rahaman, Zhongtang Liu, Wenhai Huang, and Changqing Zhang, Evaluation of Injectable Strontium-Containing Borate Bioactive Glass Cement with Enhanced Osteogenic Capacity in a Critical-Sized Rabbit Femoral Condyle Defect Model, ACS Appl. Mater. Interfaces 7 (2015).

DOI: 10.1021/am507008z

Google Scholar

[29] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27 (2006) 2907-2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[30] S. Gaur, R.K. Singh Raman, A.S. Khanna, In vitro investigation of biodegradable polymeric coating for corrosion resistance of Mg-6Zn-Ca alloy in simulated body fluid, Mater. Sci. Eng. C Mater. Biol. Appl. 42 (2014) 91-101.

DOI: 10.1016/j.msec.2014.05.035

Google Scholar

[31] Robert Baboian, Corrosion tests ans standards: Application and interpretation-2nd edition, West Conshohocken, PA.

Google Scholar

[32] Ray L. Frost, Ricardo Scholz, Andres Lopez, Yunfei Xi, A vibrational spectroscopic study of the phosphate mineral whiteite CaMn2+Mg2Al2(PO4)4(OH)2·8(H2O), Spectrochim. Acta A Mol. Biomol. Spectrosc. 124 (2014) 243–248.

DOI: 10.1016/j.saa.2014.01.053

Google Scholar

[33] Kirlene Salgado Fernandes, Evandro de Azevedo Alvarenga, Paulo Roberto Gomes Brandao, Vanessa de Freitas Cunha Lins, Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel, Rem: Rev. Esc. Minas. 64 (2011).

DOI: 10.1590/s0370-44672011000100005

Google Scholar

[34] Nguyen Van Phuong, Kyuhwan Lee, Doyon Chang, Man Kim, Sangyeoul Lee and Sungmo Moon, Zinc Phosphate Conversion Coatings on Magnesium Alloys, A Review, Met. Mater. Int. 19 (2013) 273-281.

DOI: 10.1007/s12540-013-2023-0

Google Scholar

[35] Zhang Chun-Yan, Zeng Rong-Chang, Liu Cheng-Long, Gao Jia-Cheng, Zhang Chun-Yan, Zeng Rong-Chang, Liu Cheng-Long, Gao Jia-Cheng, Comparison of calcium phosphate coatings on Mg–Al and Mg–Ca alloys and their corrosion behavior in Hank's solution, Surf. Coat. Tech. 204 (2010).

DOI: 10.1016/j.surfcoat.2010.04.038

Google Scholar

[36] Rong-Chang Zeng, Fen Zhang, Zi-Dong Lan, Hong-Zhi Cui, En-Hou Han, Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys, Corros. Sci. 88 (2014) 452–459.

DOI: 10.1016/j.corsci.2014.08.007

Google Scholar