Transplantation of Dental Pulp Stem Cells in Experimental Bone Defect

Article Preview

Abstract:

This is preliminary study in order to investigate the effect of dental pulp stem cells (DPSCs) on bone regeneration in an animal model. New Zealand rabbits were used as animal model. The critical defect was created in femoral bone and transplantation of DPSCs applied into bone defect. A colorimetric assay was used to detect ALP level in rabbit’s serum. Bone tissue regeneration was evaluated by histological analysis. In the 2nd week, the treated rabbit show increasing in the activity of ALP (157,925 μU) compared to control rabbit (155,361 μU). This increasing trend continues significantly in DPSCs rabbit (169.750 μU) compared to control rabbit (160.406) after 4 weeks. Histological evaluation revealed that the amount of bone lamellae and osteocytes were filled the defect area of DPSCs treated rabbit. Conclusions: Transplantation of DPSCs accelerating bone regeneration by raising ALP level and forming new bone tissue.

You might also be interested in these eBooks

Info:

Pages:

94-100

Citation:

Online since:

October 2017

Export:

Price:

* - Corresponding Author

[1] F.M. Vaz, H. Canhão, J.E. Fonseca, Bone: A Composite Natural Material, in: P. Těšinova (Eds), Advances in Composite Materials - Analysis of Natural and Man-Made Materials, InTech, Rijeka, 2011, pp.195-228.

DOI: 10.5772/17523

Google Scholar

[2] G.J. Tortora, B. Derrickson, Principles of Anatomy and Physiology, 12th ed, John Wiley & Sons, Inc., New Jersey (2009).

Google Scholar

[3] B. Clarke, Normal bone anatomy and physiology, Clin J Am Soc Nephrol. 3 (2008) 131–9.

Google Scholar

[4] A. Wiese, H.C. Pape, Bone Defects Caused by High-energy Injuries, Bone Loss, Infected Nonunions, and Nonunions, Orthop Clin North Am. 41. 1 (2010) 1–4.

DOI: 10.1016/j.ocl.2009.07.003

Google Scholar

[5] O.B. Betz, V.M. Betz, et al., Repair of large segmental bone defects: BMP-2 gene activated muscle grafts vs. autologous bone grafting, BMC Biotechnol. 13 (2013)1-8.

DOI: 10.1186/1472-6750-13-65

Google Scholar

[6] P. Kumar, et al., Bone grafts in dentistry, J Pharm Bioallied Sci. 5 (2013) 125–7.

Google Scholar

[7] A.R. Amini, C.T. Laurencin, S.P. Nukavarapu, Bone Tissue Engineering: Recent Advances and Challenges, Crit Rev Biomed Eng. 40 (2012) 363–408.

DOI: 10.1615/critrevbiomedeng.v40.i5.10

Google Scholar

[8] L.A. A Aly, Stem cells: Sources, and regenerative therapies in dental research and practice, World J Stem Cells 7 (2015) 1047–53.

Google Scholar

[9] M. Nakashima, K. Iohara, et al., Dental pulp stem cells and regeneration, Endod Topics 28 (2013) 38–50.

DOI: 10.1111/etp.12027

Google Scholar

[10] P.D. Potdar, Y.D. Jethmalani, Human dental pulp stem cells: Applications in future regenerative medicine, World J Stem Cells 7 (2015) 839–51.

DOI: 10.4252/wjsc.v7.i5.839

Google Scholar

[11] M. Goldberg, Pulp Stem Cells : Niches of Stem Cells, in: M. Goldberg (Eds), The Dental Pulp, Springer, Berlin Heidelberg, 2014, pp.219-236.

DOI: 10.1007/978-3-642-55160-4_16

Google Scholar

[12] L. Pierdomenico, L. Bonsi, et al., Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp, Transplantation 80 (2005) 836–842.

DOI: 10.1097/01.tp.0000173794.72151.88

Google Scholar

[13] S. Gronthos, M. Mankani, et al., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13625–30.

DOI: 10.1073/pnas.240309797

Google Scholar

[14] C. Mangano, F. Paino, et al., Human Dental Pulp Stem Cells Hook into Biocoral Scaffold Forming an Engineered Biocomplex, PLoS One 6 (2011) 1–9.

DOI: 10.1371/journal.pone.0018721

Google Scholar

[15] E.W. Bachtiar, L.R. Amir, et al., Scaffold degradation during bonetissue reconstruction in Macaque nemestrina mandible, Interven Med and Applied Sci. 8. 2 (2016) 77-81.

Google Scholar

[16] M. Wahyudi, A. F Kamal, N. C Siregar, et al., Effect of extracorporeal irradiation on segmental bone autograft incorporation in Sprague-Dawley rats", Med J Indones. 23 (2014) 147–153.

DOI: 10.13181/mji.v23i3.1082

Google Scholar

[17] R. d'Aquino, A. Graziano, et al., Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation, Cell Death Differ. 14 (2007) 1162–1171.

DOI: 10.1038/sj.cdd.4402121

Google Scholar

[18] E.E. Golub, K. Boesze-Battaglia, The role of alkaline phosphatase in mineralization, Curr Opin Orthop. 18 (2007) 444–448.

DOI: 10.1097/bco.0b013e3282630851

Google Scholar

[19] K. Stefkova, J. Prochazkova, et al., Alkaline Phosphatase in Stem Cells, Stem Cells Int. 2015 (2015) 1–12.

Google Scholar

[20] G. Kawai, T. Ohno, et al., Human Dental Pulp Facilitates Bone Regeneration in a Rat Bone Defect Model, Bone Tissue Regen Insights 4 (2013) 1–10.

DOI: 10.4137/btri.s10687

Google Scholar

[21] P. Pivonka, C.R. Dunstan, Role of mathematical modeling in bone fracture healing, Bonekey Rep. 1 (2012) 1-10.

DOI: 10.1038/bonekey.2012.221

Google Scholar

[22] J.H. Li, D.Y. Liu, et al., Human dental pulp stem cell is a promising autologous seed cell for bone tissue engineering, Chin Med J (Engl). 124 (2011) 4022–8.

Google Scholar

[23] M.N. Knight, K.D. Hankenson, Mesenchymal Stem Cells in Bone Regeneration, Adv Wound Care 2 (2013) 306–316.

DOI: 10.1089/wound.2012.0420

Google Scholar

[24] A. Bronckaers, P. Hilkens, et al., Angiogenic Properties of Human Dental Pulp Stem Cells, PLoS One 8 (2013) 1-11.

DOI: 10.1371/journal.pone.0071104

Google Scholar

[25] R.R. Ager, J.L. Davis, et al., Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer's disease and neuronal loss, Hippocampus 25 (2015) 813–26.

DOI: 10.1002/hipo.22405

Google Scholar

[26] A.J. Anderson, D.L. Haus, et al., Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient?, Regen Med. 6 (2011) 367–406.

DOI: 10.2217/rme.11.22

Google Scholar