Synthesis of Silicon- and Carbonate-doped Biomimetic Hydroxyapatite in the Presence of Citrate Ions and its Physicochemical, Bioactivity Properties

Article Preview

Abstract:

The present study investigated the phase composition, the structural, morphological, and bioactivity properties of silicon- and carbonate-doped biomimetic hydroxyapatite synthesized by precipitation from aqueous solutions in the presence of different amounts of citrate ions. The X-ray diffraction and Fourier transform infrared spectroscopy analyses confirmed that all the samples exhibited single-phase. Base on the results of the morphological study, all the obtained samples consisted of porous agglomerated particles made up of tiny crystallites in the nanometer range. The change in structural order, as well as the decrease in particle size and degree of crystallinity result from the presence of citrate ions were revealed by X-ray diffraction, dynamic light scattering, and scanning electron microscopy analyses. Bioactivity properties of samples were studied by analyzing their bioresorbability in physiological saline (ω (NaCl) = 0.9%) and evaluating their solubility in SBF solution after a certain period of soaking time. The amount of the released Ca2+ ions was found to increase with the increasing concentration of citrate ions introduced in the synthesis process. The better solubility of material with the presence of citrate ions was beneficial in the growth of apatite on its surface that made produced material more biocompatible.

You might also be interested in these eBooks

Info:

Pages:

1-12

Citation:

Online since:

November 2020

Export:

Price:

* - Corresponding Author

[1] L. Di Silvio, M. Dalby, W. Bonfield, In vitro response of osteoblasts to hydroxyapatite-reinforced polyethylene composites, J. Mater. Sci. Mater. Med. 9 (1998) 845–848.

DOI: 10.1023/a:1008900312950

Google Scholar

[2] A.M. Ambrosio, J.S. Sahota, Y. Khan, C.T. Laurencin, A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization, J. Biomed. Mater. Res. 58 (2001) 295–301.

DOI: 10.1002/1097-4636(2001)58:3<295::aid-jbm1020>3.0.co;2-8

Google Scholar

[3] M.R. Saeri, A. Afshar, M. Ghorbani, N. Ehsani, C.C. Sorrell, The wet precipitation process of hydroxyapatite, Mater. Lett. 57 (2003) 4064–4069.

DOI: 10.1016/s0167-577x(03)00266-0

Google Scholar

[4] P. Ducheyne, Q. Qiu, Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function, Biomaterials. 20 (1999) 2287–2303.

DOI: 10.1016/s0142-9612(99)00181-7

Google Scholar

[5] M. Vallet-Regí, D. Arcos, Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate-based implants, J Mater Chem. 15 (2005) 1509–1516.

DOI: 10.1039/b414143a

Google Scholar

[6] J. Peña, Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique, J. Eur. Ceram. Soc. 23 (2003) 1687–1696.

DOI: 10.1016/s0955-2219(02)00369-2

Google Scholar

[7] S. Dorozhkin, Calcium Orthophosphates in Nature, Biology and Medicine, Materials. 2 (2009) 399–498.

DOI: 10.3390/ma2020399

Google Scholar

[8] M. Šupová, Substituted hydroxyapatites for biomedical applications: A review, Ceram. Int. 41 (2015) 9203–9231.

DOI: 10.1016/j.ceramint.2015.03.316

Google Scholar

[9] S.V. Dorozhkin, Calcium Orthophosphate-Based Bioceramics and Biocomposites: Dorozhkin/Calcium Orthophosphate-Based Bioceramics and Biocomposites, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, (2016).

DOI: 10.1002/9783527699315

Google Scholar

[10] O. Kaygili, S.V. Dorozhkin, S. Keser, Synthesis and characterization of Ce-substituted hydroxyapatite by sol–gel method, Mater. Sci. Eng. C. 42 (2014) 78–82.

DOI: 10.1016/j.msec.2014.05.024

Google Scholar

[11] O. Kaygili, S. Keser, M. Kom, Y. Eroksuz, S.V. Dorozhkin, T. Ates, I.H. Ozercan, C. Tatar, F. Yakuphanoglu, Strontium substituted hydroxyapatites: Synthesis and determination of their structural properties, in vitro and in vivo performance, Mater. Sci. Eng. C. 55 (2015) 538–546.

DOI: 10.1016/j.msec.2015.05.081

Google Scholar

[12] C. Rey, V. Renugopalakrishman, B. Collins, M.J. Glimcher, Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging, Calcif. Tissue Int. 49 (1991) 251–258.

DOI: 10.1007/bf02556214

Google Scholar

[13] F.C.M. Driessens, The mineral in bone, dentin and tooth enamel, Bull. Sociétés Chim. Belg. 89 (2010) 663–689.

DOI: 10.1002/bscb.19800890811

Google Scholar

[14] S. Sprio, A. Tampieri, E. Landi, M. Sandri, S. Martorana, G. Celotti, G. Logroscino, Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon, Mater. Sci. Eng. C. 28 (2008) 179–187.

DOI: 10.1016/j.msec.2006.11.009

Google Scholar

[15] R. Murugan, S. Ramakrishna, Production of ultra-fine bioresorbable carbonated hydroxyapatite, Acta Biomater. 2 (2006) 201–206.

DOI: 10.1016/j.actbio.2005.09.005

Google Scholar

[16] J.H. Shepherd, D.V. Shepherd, S.M. Best, Substituted hydroxyapatites for bone repair, J. Mater. Sci. Mater. Med. 23 (2012) 2335–2347.

DOI: 10.1007/s10856-012-4598-2

Google Scholar

[17] E.M. Carlisle, Silicon: a possible factor in bone calcification, Science. 167 (1970) 279–280.

DOI: 10.1126/science.167.3916.279

Google Scholar

[18] C.M. Botelho, R.A. Brooks, S.M. Best, M.A. Lopes, J.D. Santos, N. Rushton, W. Bonfield, Human osteoblast response to silicon-substituted hydroxyapatite, J. Biomed. Mater. Res. A. 79 (2006) 723–730.

DOI: 10.1002/jbm.a.30806

Google Scholar

[19] A.E. Porter, C.M. Botelho, M.A. Lopes, J.D. Santos, S.M. Best, W. Bonfield, Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo, J. Biomed. Mater. Res. A. 69 (2004) 670–679.

DOI: 10.1002/jbm.a.30035

Google Scholar

[20] L. C. Costello, The Important Role of Osteoblasts and Citrate Production in Bone Formation: Osteoblast Citration, as a New Concept for an Old Relationship, Open Bone J. 4 (2012) 27–34.

DOI: 10.2174/1876525401204010027

Google Scholar

[21] Y.-Y. Hu, A. Rawal, K. Schmidt-Rohr, Strongly bound citrate stabilizes the apatite nanocrystals in bone, Proc. Natl. Acad. Sci. 107 (2010) 22425–22429.

DOI: 10.1073/pnas.1009219107

Google Scholar

[22] Y.-Y. Hu, X.P. Liu, X. Ma, A. Rawal, T. Prozorov, M. Akinc, S.K. Mallapragada, K. Schmidt-Rohr, Biomimetic Self-Assembling Copolymer−Hydroxyapatite Nanocomposites with the Nanocrystal Size Controlled by Citrate, Chem. Mater. 23 (2011) 2481–2490.

DOI: 10.1021/cm200355n

Google Scholar

[23] N.H. de Leeuw, J.A.L. Rabone, Molecular dynamics simulations of the interaction of citric acid with the hydroxyapatite (0001) and (011ˉ0) surfaces in an aqueous environment, CrystEngComm. 9 (2007) 1178–1186.

DOI: 10.1039/b710974a

Google Scholar

[24] B.D. Cullity, J.W. Weymouth, Elements of X-Ray Diffraction, Am. J. Phys. 25 (1957) 394–395.

Google Scholar

[25] G. Singh, S. Singh, S. Prakash, Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4V alloy, Surf. Coat. Technol. 205 (2011) 4814–4820.

DOI: 10.1016/j.surfcoat.2011.04.064

Google Scholar

[26] G. Schwarzenbach, G. Flaschka, Complexometric titration, Khimiia Publ., Moscow, (1970).

Google Scholar

[27] T. Kokubo, Bioactive glass ceramics: properties and applications, Biomaterials. 12 (1991) 155–163.

DOI: 10.1016/0142-9612(91)90194-f

Google Scholar

[28] G. Charlot, Methods of analytical chemistry. Quantitative analysis of inorganic compounds, Leningrad: Khimiya,, Moscow, (1966).

Google Scholar

[29] E. Skwarek, W. Janusz, D. Sternik, Adsorption of citrate ions on hydroxyapatite synthetized by various methods, J. Radioanal. Nucl. Chem. 299 (2014) 2027–(2036).

DOI: 10.1007/s10967-013-2825-z

Google Scholar

[30] J. Coates, Interpretation of Infrared Spectra: A Practical Approach, In: Meyers, R.A., Ed., Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., Chichester. (2000) 10815 - 10837.

Google Scholar

[31] M. Tourbin, F. Brouillet, B. Galey, N. Rouquet, P. Gras, N. Abi Chebel, D. Grossin , C. Frances, Agglomeration of stoichiometric hydroxyapatite: Impact on particle size distribution and purity in the precipitation and maturation steps, Powder Technol. 360 (2020) 977–988.

DOI: 10.1016/j.powtec.2019.10.050

Google Scholar

[32] M. Bohner, J. Lemaitre, Can bioactivity be tested in vitro with SBF solution?, Biomaterials. 30 (2009) 2175–2179.

DOI: 10.1016/j.biomaterials.2009.01.008

Google Scholar

[33] R. Rojaee, M. Fathi, K. Raeissi, M. Taherian, Electrophoretic deposition of bioactive glass nanopowders on magnesium-based alloy for biomedical applications, Ceram. Int. 40 (2014) 7879–7888.

DOI: 10.1016/j.ceramint.2013.12.135

Google Scholar

[34] K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials. 27 (2006) 3413–3431.

DOI: 10.1016/j.biomaterials.2006.01.039

Google Scholar

[35] E. Boanini, M. Gazzano, A. Bigi, Ionic substitutions in calcium phosphates synthesized at low temperature, Acta Biomater. 6 (2010) 1882–1894.

DOI: 10.1016/j.actbio.2009.12.041

Google Scholar