Development of 3D Antibiotic-Eluting Bioresorbable Scaffold with Attenuating Envelopes

Article Preview

Abstract:

Thick Section 3D Bioresorbable Scaffolds Are Proposed as a Potential Alternative to Biologic Skin Grafts and Supportive Fillers for Non-Healing Chronic Wound Ulcers. Synthetic Bioresorbable Scaffolds Avoid Human and Animal Derived Contamination Risks, Provide Feasible Shelf Life, Availability and Cost, and Act as a Consistent Platform for Localized Drug Elution. A Bioresorbable Polyester-Based Scaffold (Infilon™) Was Investigated as a Drug Delivery Vehicle for Chloramphenicol Antibiotic (CAP) Combined with a Bioactive Envelope. the Effect of Varying Envelope Protocols on Antibiotic Elution Profile and Antimicrobial Potency on Scaffolds Were Analysed. the Maximum Antibiotic Loading Efficiency of the Scaffold Was 10.18% W/w. the Antibiotic Elution Profile Showed that the Burst Phase Lasted One Hour Subsequent to a Sustained Phase Approaching near Asymptotic Release. Envelope Permutations of Bulk Metallic Glass (BMG) and Bioglass 45S5 Reduced the Total Amount of Antibiotic Released by 1 to 1.8 Mg while the Polyethylene Oxide Envelope Extended the Burst Phase to 2 Hours. CAP Loaded Scaffolds Demonstrated Antimicrobial Effectiveness for 24 Hours. Results Show Potential for the Infilon™ Scaffold to Be Used as a Platform for Localized Antibiotic Delivery. Delivery Profiles Can Be Enhanced with Additional BMG or Bioglass Envelopes. this Approach Has Opportunity to Provide a Synergistic Coupling of Antimicrobial Action and the Harbouring of Granular Tissue Subsequent to Final Wound Healing.

You might also be interested in these eBooks

Info:

Pages:

55-62

Citation:

Online since:

October 2012

Export:

Price:

[1] K. Ousey, C. McIntosh. Physiology of Wound Healing. Lower Extremity Wounds. 2008, John Wiley & Sons Ltd. 25-46.

DOI: 10.1002/9780470697870.ch2

Google Scholar

[2] P. Teller, T. K White. The Physiology of Wound Healing: Injury Through Maturation. Surgical Clinics of North America, 2009. 89 (3), 599-610.

DOI: 10.1016/j.suc.2009.03.006

Google Scholar

[3] E. A Gantwerker, D.B. Hom. Skin: Histology and Physiology of Wound Healing. Facial Plastic Surgery Clinics of North America, 2011. 19 (3), 441-453.

DOI: 10.1016/j.fsc.2011.06.009

Google Scholar

[4] A.M. B Minnis. A Substantive Theory to explain the Impact of Living with a Chronic Wound whilst receiving Conflicting or Inappropriate Advice and Care. Thesis in School of Health Sciences, Science, Engineering and Technology, 2008, RMIT University.

Google Scholar

[5] P. C Leung. Diabetic foot ulcers - a comprehensive review. The Surgeon, 2007. 5 (4), 219-31.

Google Scholar

[6] K. E Minges, P. Zimmet, D. J Magliano, D. W Dunstan, A. Brown, J. E Shaw. Diabetes prevalence and determinants in Indigenous Australian populations: A systematic review. Diabetes Res. Clin. Pract., 2011. 93 (2), 139-149.

DOI: 10.1016/j.diabres.2011.06.012

Google Scholar

[7] M. Daniel, P. Lekkas, M. Cargo. Environments and Cardiometabolic Diseases in Aboriginal Populations. Heart, Lung Circ., 2010. 19 (5–6), 306-315.

DOI: 10.1016/j.hlc.2010.01.005

Google Scholar

[8] M. Naqshbandi, S. B Harris, J. G Esler, F. Antwi-Nsiah. Global complication rates of type 2 diabetes in Indigenous peoples: A comprehensive review. Diabetes Research and Clinical Practice, 2008. 82 (1), 1-17.

DOI: 10.1016/j.diabres.2008.07.017

Google Scholar

[9] T. Vos, B. Barker, S. Begg, L. Stanley, A. D Lopez. Burden of disease and injury in Aboriginal and Torres Strait Islander Peoples: the Indigenous health gap. International Journal of Epidemiology, 2009. 38 (2), 470-477.

DOI: 10.1093/ije/dyn240

Google Scholar

[10] K. Hill, B. Barker, T. Vos. Excess Indigenous mortality: are Indigenous Australians more severely disadvantaged than other Indigenous populations? International Journal of Epidemiology, 2007. 36 (3), 580-589.

DOI: 10.1093/ije/dym011

Google Scholar

[11] M. Wong, M. Haswell-Elkins, E. Tamwoy, R. McDermott, P. d'Abbs. Perspectives on clinic attendance, medication and foot-care among people with diabetes in the Torres Strait Islands and Northern Peninsula Area. Aust. J Rural Health. 2005. 13 (3), 172-177.

DOI: 10.1111/j.1440-1854.2005.00678.x

Google Scholar

[12] J. C Page. Critiquing clinical research of new technologies for diabetic foot wound management. J Foot Ankle Surg., 2002. 41 (4), 251-259.

DOI: 10.1016/s1067-2516(02)80024-2

Google Scholar

[13] S. MacNeil. Biomaterials for tissue engineering of skin. Materials Today, 2008. 11 (5), 26-35.

Google Scholar

[14] S. Böttcher-Haberzeth, T. Biedermann, E. Reichmann. Tissue engineering of skin. Burns, 2010. 36 (4), 450-460.

DOI: 10.1016/j.burns.2009.08.016

Google Scholar

[15] T. Lazic, V. Falanga. Bioengineered Skin Constructs and Their Use in Wound Healing. Plastic and Reconstructive Surgery, 2011. 127, 75S-90S.

DOI: 10.1097/prs.0b013e3182009d9f

Google Scholar

[16] N. Frescos, T. Rando. Infected Wounds. Lower Extremity Wounds. 2008, John Wiley & Sons Ltd. 73-105.

DOI: 10.1002/9780470697870.ch4

Google Scholar

[17] I. A Holder, S. T Boyce. Formulation of idealized, topical antimicrobial mixtures for use with cultured skin grafts. J. Antimicrobial Chemotherapy, 1996. 38 (3), 457-463.

DOI: 10.1093/jac/38.3.457

Google Scholar

[18] M. N Rahaman, D. E Day, B. onny Bal, Q. Fu, S. B Jung, L. F Bonewald, A. P Tomsia. Bioactive glass in tissue engineering. Acta Biomaterialia, 2011. 7 (6), 2355-2373.

DOI: 10.1016/j.actbio.2011.03.016

Google Scholar

[19] P. Wray. Cotton candy' that heals,. American Ceramics Society Bulletin, 2011. 90 (4), 24-31.

Google Scholar

[20] J. Guan, K. L Fujimoto, M. S Sacks, W. R Wagner. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials, 2005. 26 (18), 3961-3971.

DOI: 10.1016/j.biomaterials.2004.10.018

Google Scholar

[21] K. Rezwan, Q. Z Chen, J. J Blaker, A. R Boccaccini. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006. 27 (18), 3413-3431.

DOI: 10.1016/j.biomaterials.2006.01.039

Google Scholar

[22] J. S Choi, K. W Leong, H. S Yoo. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials, 2008. 29 (5), 587-596.

DOI: 10.1016/j.biomaterials.2007.10.012

Google Scholar

[23] S. Singh, B. M Wu, J. C Dunn. The enhancement of VEGF-mediated angiogenesis by polycaprolactone scaffolds with surface cross-linked heparin. Biomaterials, 2011. 32 (8), 2059-(2069).

DOI: 10.1016/j.biomaterials.2010.11.038

Google Scholar

[24] H. Liu, L. Zhang, P. Shi, Q. Zuo, Y. Li. Hydroxyapatite/polyurethane scaffold incorporated with drug-loaded ethyl cellulose microspheres for bone regeneration. J. Biomed. Mater Res. Part B: Applied Biomater., 2010. 95B (1), 36-46.

DOI: 10.1002/jbm.b.31680

Google Scholar

[25] H. I Chang, Y. C Lau, C. Yan, A. G Coombes. Controlled release of an antibiotic, gentamicin sulphate, from gravity spun polycaprolactone fibers. J. Biomed. Mater. Res. Part A, 2008. 84A (1), 230-237.

DOI: 10.1002/jbm.a.31476

Google Scholar

[26] M. Zilberman, J.J. Elsner. Antibiotic-eluting medical devices for various applications. J. Controlled Release, 2008. 130 (3), 202-215.

DOI: 10.1016/j.jconrel.2008.05.020

Google Scholar

[27] H. I Chang, Y. Perrie, A.G. A Coombes. Delivery of the antibiotic gentamicin sulphate from precipitation cast matrices of polycaprolactone. J. Controlled Release, 2006. 110 (2), 414-421.

DOI: 10.1016/j.jconrel.2005.10.028

Google Scholar

[28] E. Verhoeven, T. R De Beer, E. Schacht, G. Van den Mooter, J. P Remon, C. Vervaet. Influence of polyethylene glycol/polyethylene oxide on the release characteristics of sustained-release ethylcellulose mini-matrices produced by hot-melt extrusion: in vitro and in vivo evaluations. Eur. J. Pharm. Biopharm., 2009. 72 (2), 463-470.

DOI: 10.1016/j.ejpb.2009.01.006

Google Scholar

[29] X. Gu, Y. Zheng, S. Shong, T. Xi, J. Wang, W. Wang. Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. Biomaterials, 2010. 31 (6), 1093-1103.

DOI: 10.1016/j.biomaterials.2009.11.015

Google Scholar

[30] V. Cannillo, F. Chiellini, P. Fabbri, A. Sola. Production of Bioglass® 45S5 - Polycaprolactone composite scaffolds via salt-leaching. Composite Structures, 2010. 92 (8), 1823-1832.

DOI: 10.1016/j.compstruct.2010.01.017

Google Scholar

[31] S. Verrier, J. J Blaker, V. Maguet, L. L Hench, A. R Boccaccini. PDLLA/Bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials, 2004. 25 (15), 3013-3021.

DOI: 10.1016/j.biomaterials.2003.09.081

Google Scholar

[32] M. M Crowley, F. Zhang, M. A Repka, S. Thumma, S. B Upadye, S. K Battu, J. W McGinity, C. Martin. Pharmaceutical Applications of Hot-Melt Extrusion: Part I. Drug Dev. Ind. Pharm., 2007. 33 (9), 909-926.

DOI: 10.1080/03639040701498759

Google Scholar

[33] H. Tamai, N Katsu, K. Ono, H. Yasuda. Antibacterial activated carbons prepared from pitch containing organometallics. Carbon, 2001. 39 (13), 1963-(1969).

DOI: 10.1016/s0008-6223(01)00003-3

Google Scholar

[34] J. Sawai, T. Yoshikawa. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J. Applied Microbiology, 2004. 96 (4), 803-809.

DOI: 10.1111/j.1365-2672.2004.02234.x

Google Scholar

[35] J. Sawai. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods, 2003. 54 (2), 177-182.

DOI: 10.1016/s0167-7012(03)00037-x

Google Scholar