Backstepping Controller Design for a 5 DOF Spherical Inverted Pendulum

Article Preview

Abstract:

This paper presents a Backstepping controller for five degrees of freedom Spherical Inverted Pendulum. Since the system is nonlinear, unstable, underactuated and MIMO and has a nonsquare form, the classic control design cannot be applied to control it. In order to remedy this problem, we propose in this paper a new method based on hierarchical steps of the Backstepping controller taking into a count the nonlinearities that cannot be neglected. Furthermore, a Linear Quadratic Regulator controller and LQR + PID based on the linearized system model are also designed for performance comparison. Finally, a simulation study is carried out to prove the effectiveness of proposed control scheme and is validated using the virtual reality environment that proves the performance of the Backstepping controller over the linear ones where it brings the pendulum from any initial condition in the upper hemisphere while the base is brought to the origin of the coordinates.

You might also be interested in these eBooks

Info:

Pages:

37-50

Citation:

Online since:

February 2019

Export:

Price:

* - Corresponding Author

[1] T. H. Deng, M. Deng, A. I. Inoue, Nonlinear control of the underactuated two-link manipulator using the sliding-mode type partial linearisation method, International Journal of Computer Applications in Technology 41 (2011) 230-235.

DOI: 10.1504/IJCAT.2011.042697

Google Scholar

[2] Huang An-Chyau and Chen Yung-Feng and Kai Chen-Yu, Adaptive Control of Underactuated Mechanical Systems: Pendubot. (2015) 189-200.

DOI: 10.1142/9789814663557_0010

Google Scholar

[3] C. Aguilar-Avelar, J. Moreno-Valenzuela, A composite controller for trajectory tracking applied to the furuta pendulum, ISA Transactions 57 (2015) 286294. doi:http://dx.doi.org/10.1016/j.isatra.2015.02.009.

DOI: 10.1016/j.isatra.2015.02.009

Google Scholar

[4] M. Ramrez-Neriaa, H. Sira-Ramreza, R. Garrido-Moctezumaa, A. Luviano-Jurezb, Linear active disturbance rejection control of underactuated systems: The case of the furuta pendulum, ISA Transactions 53 (4) (2014) 920 - 928, disturbance Estimation and Mitigation. doi:http://dx.doi.org/10.1016/j.isatra.2013.09.023.

DOI: 10.1016/j.isatra.2013.09.023

Google Scholar

[5] {Olfa Boubaker, The Inverted Pendulum Benchmark in Nonlinear Control Theory : A Survey Regular Paper, 2013[6] N. Sun, Y. Fang, New energy analytical results for the regulation of underactuated overhead cranes: An end-effector motion-based approach, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 59 (12) (2012) 4723-4734.

DOI: 10.1109/TIE.2012.2183837

Google Scholar

[7] C. Aguilar-Avelar, R. Rodriguez-Calderon, S. Puga-Guzman, J. Moreno-Valenzuela, Effects of nonlinear friction compensation in the inertia wheel pendulum, Journal of Mechanical Science and Technology 31 (9) (2017) 4425-4433.

DOI: 10.1007/s12206-017-0843-4

Google Scholar

[8] M. Keshmiri, A. F. Jahromi, A. Mohebbi, M. H. Amoozgar, W.-F. Xie, Modeling and control of the ball and beam system using model based and non-model based control approaches, International Journal on Smart Sensing and Intelligent Systems 5 (1).

Google Scholar

[9] D. Liu, W. Guo, Nonlinear backstepping design for the underactuated tora system, Journal of Vibroengineering 16 (2014) 552-559.

Google Scholar

[10] E. Aranda-Escolstico, M. Guinaldo, F. Gordillo, S. Dormido, A novel approach to periodic eventtriggered control: Design and application to the inverted pendulum, ISA Transactions (2016) - doi:http://dx.doi.org/10.1016/j.isatra.2016.08.019.

DOI: 10.1016/j.isatra.2016.08.019

Google Scholar

[11] V. Casanova, J. Alcana, J. Salt, R. Piz, ngel Cuenca, Control of the rotary inverted pendulum through thresholdbased communication, ISA Transactions 62 (2016) 357366. doi:http://dx.doi.org/10.1016/j.isatra.2016.01.009.

DOI: 10.1016/j.isatra.2016.01.009

Google Scholar

[12] J. Ghommam, A. Chemori, F. Mnif, The Inverted Pendulum in Control Theory and Robotics: From theory to new innovations, IET Digital Library, 2017, Ch. Finite-time stabilization of underactuated mechanical systems in the presence of uncertainties: application to the cart-pole system.

DOI: 10.1049/pbce111e_ch8

Google Scholar

[13] S. Krafes, Z. Chalh, A. Saka, Review: Linear, nonlinear and intelligent controllers for the inverted pendulum problem, in: 2016 IEEE International Conference on Electrical and Information Technologies (ICEIT), 2016, pp.136-141.

DOI: 10.1109/EITech.2016.7519577

Google Scholar

[14] Chen Xianmin and Yu Rongrong and Huang Kang and Zhen Shengchao and Sun Hao and Shao Ke. Linear motor driven double inverted pendulum: A novel mechanical design as a testbed for control algorithms. Simulation Modelling Practice and Theory. (2018).

DOI: 10.1016/j.simpat.2017.11.009

Google Scholar

[15] Fatima Aliyu Darma and Ado Dan Ado Dan Isa and Auwalu Muhammad Abdullahi and Ismail Abubakar Umar and Lubabatu B. Ila. Fuzzy Logic Control of a Rotary Double Inverted Pendulum System.Applications of Modelling and Simulation. Vol 2, 1 (2018).

Google Scholar

[16] Sanchez R.Bonifacio and Ordaz O.Patricio and Poznyak G.Alexander. Robust Stabilizing Control for the Electromechanical Triple-Link Inverted Pendulum System. IFAC-PapersOnLine Volume 51, (13,) 2018, 314-319.

DOI: 10.1016/j.ifacol.2018.07.297

Google Scholar

[17] Liu, G. (2006). Modelling, stabilising control and trajectory tracking of a spherical inverted pendulum. Ph.D Thesis. The University of Melbourne.

Google Scholar

[18] Pham, D. B., and Lee, S.-G. (2018). Hierarchical sliding mode control for a two-dimensional ball segway that is a class of a second-order underactuated system. Journal of Vibration and Control.

DOI: 10.1177/1077546318770089

Google Scholar

[19] L. Sentis, J. P. O. Khatib, Compliant control of multicontact and centerof-mass behaviors in humanoid robots, IEEE TRANSACTIONS ON ROBOTICS 26 (3).

Google Scholar

[21] C.-C. Tsai, C.-C. Yu, C.-S. Chang, Aggregated hierarchical sliding-mode control for spherical inverted pendulum, in: Proceedings of 2011 8th Asian Control Conference (ASCC), (2011).

Google Scholar

[22] M.-G. Yoon, Dynamics and stabilization of a spherical inverted pendulum on a wheeled cart, International Journal of Control, Automation and Systems 8 (2010) 1271-1279.

DOI: 10.1007/s12555-010-0612-y

Google Scholar

[23] M. Fajar, S. Douglas, J. Gomm, Modelling and simulation of spherical inverted pendulum based on lqr control with simmechanics, Applied Mechanics and Materials 391 (2013) 163-167.

DOI: 10.4028/www.scientific.net/AMM.391.163

Google Scholar

[24] S.-T. Kao, W.-J. Chiou, M.-T. Ho, Balancing of a spherical inverted pendulum with an omnidirectional mobile robot, in: 2013 IEEE International Conference on Control Applications (CCA), 2013.

DOI: 10.1109/CCA.2013.6662841

Google Scholar

[25] C. Raimndez, J. L. Camao, A. Barreiro, Stabilizing an inverted spherical pendulum using a scale quad-rotor, in: The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems.

DOI: 10.1109/CYBER.2014.6917445

Google Scholar

[26] G. Liu, D. Nei, I. Mareels, Non-linear stable inversionbased output tracking control for a spherical inverted pendulum, International Journal of Control 81 (1) (2008) 116-133. doi:http://dx.doi.org/10.1080/00207170701383798.

DOI: 10.1080/00207170701383798

Google Scholar

[27] A. M. Bloch, N. E. Leonard, J. E. Marsden, Controlled lagrangians and the stabilization of mechanical systems i: The first matching theorem, IEEE TRANSACTIONS ON AUTOMATIC CONTROL 45 (12) (2000) 2253-2270.

DOI: 10.1109/9.895562

Google Scholar

[28] R. Olfati-Saber, Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles, Thesis (Ph.D.)Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science.

Google Scholar

[29] S. Rudra, R. kumar Barai, M. Maitra, D. Mandal, S. Ghosh, S. Dam, P. Bhattacharya, A. Dutta, Global stabilization of a flat underactuated inertia wheel: A block backstepping approach, International Conference on Computer Communication and Informatics (ICCCI).

DOI: 10.1109/ICCCI.2013.6466318

Google Scholar

[30] S. Rudra, R. K. Barai, M. Maitra, D. Mandai, S. Dam, S. Ghosh, P. Bhattacharyya, A. Dutta, Design of nonlinear state feedback control law for underactuated tora system: A block backstepping approach, 7th International Conference on Intelligent Systems and Control (ISCO).

DOI: 10.1109/ISCO.2013.6481129

Google Scholar

[31] S. Rudra, R. K. Barai, Design of block backstepping based nonlinear state feedback controller for pendubot, First International Conference on Control, Measurement and Instrumentation (CMI).

DOI: 10.1109/CMI.2016.7413794

Google Scholar

[32] A. Ebrahim, G. Murphy, Adaptive backstepping controller design of an inverted pendulum, Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory.

DOI: 10.1109/SSST.2005.1460900

Google Scholar

[33] S. Rudra, R. K. Barai, M. Maitra, Block backstepping design of nonlinear state feedback control law for underactuated mechanical systemsdoi:10.1007/978-981-10-1956-2.[34] S. Rudra, R. K. Barai, M. Maitra, Nonlinear state feedback controller design for underactuated mechanical system: A modified block backstepping approach, ISA Transactions.

Google Scholar

[35] D. Zhai, A.-Y. Lu, J.-H. Li, Q.-L. Zhang, State and dynamic output feedback control of switched linear systems via a mixed time and statedependent switching law.

DOI: 10.1016/j.nahs.2016.04.007

Google Scholar

[36] C. Duan, F. Wu, Analysis and control of switched linear systems via dwell-time min-switching.

Google Scholar

[37] C. Duan, F. Wu, Output-feedback control for switched linear systems subject to actuator saturation.

Google Scholar

[38] N. Khaled, Virtual Reality and Animation for MATLAB and Simulink Users, Springer-Verlag London, 2012.

DOI: 10.1007/978-1-4471-2330-9

Google Scholar