Future Dielectric Materials for CNT Interconnects - Possibilities and Challenges

Article Preview

Abstract:

Carbon nanotube (CNT) interconnects are emerging as the ultimate choice for next generation ultra large scale integrated (ULSI) circuits. Significant progress in precise growth of aligned CNTs and integration of multiwalled CNT interconnects into a test chip make them promising candidates for future nanoelectronic chips. Tremendous research efforts were made on silicon based ultra-low-k dielectrics for Cu interconnects, but, the most recent advancements in polymer based composites as dielectric materials open up fresh challenges in the use of low-k dielectrics for CNT interconnects. This paper reviews the emerging polymer composites like Boron Nitride Nanotubes, Graphene/Polyimide composites, Metal Organic Frameworks and small diameter CNTs. Many reviews are already exists on the synthesis, fabrication, dielectric, mechanical, chemical and thermal properties of these materials. In this review, we have explained the specific properties of these materials and the necessities for integrating them into CNT interconnects to meet the requirements of future IC designers.Keywords: low-k dielectric materials, ultra low-k dielectrics, carbon nanotubes, interconnects, dielectric constant,

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-42

Citation:

Online since:

May 2018

Export:

Price:

* - Corresponding Author

[1] S. Iijima, Helical Microtubules of Graphitic Carbon, Nature 354 (1991) 56.

Google Scholar

[2] B. Peng, M. Locascio, P. Zapol, S. Li, S. L. Mielke, G. C. Schatz, H. D. Espinosa, Nature Nanotechnology 3 (2008) 626.

Google Scholar

[3] S. Bellucci, Carbon nanotubes: physics and applications, Physica Status Solidi (c) 2 (2005) 34.

Google Scholar

[4] S. B. Sinnott, R. Andrews, Carbon nanotubes: synthesis, properties, and applications, Critical Reviews in Solid State and Materials Sciences 26 (2001) 145.

DOI: 10.1080/20014091104189

Google Scholar

[5] Z. Wang, L. Ci, L. Chen, S. Nayak, P. M. Ajayan, N. Koratkar, Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes, Nano Letters 7 (2007) 697.

DOI: 10.1021/nl062853g

Google Scholar

[6] S. Hong, S. Myung, Nanotube Electronics: A flexible approach to mobility, Nature Nanotechnology 2 (2007) 207.

Google Scholar

[7] E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature, Nano Letters 6 (2006) 96.

DOI: 10.1021/nl052145f

Google Scholar

[8] P. Avouris, J. Appenzeller, R. Martel and S. J. Wind, Carbon nanotube electronics, Proceedings of the IEEE 91 (2003) 1772.

DOI: 10.1109/jproc.2003.818338

Google Scholar

[9] J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst and V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes, Carbon 49 (2011) 2581.

DOI: 10.1016/j.carbon.2011.03.028

Google Scholar

[10] N. Srivastava, H. Li, F. Kreupl and K. Banerjee, On the applicability of single-walled carbon nanotubes as VLSI interconnects, IEEE Transactions on Nanotechnology 8 (2009) 542.

DOI: 10.1109/tnano.2009.2013945

Google Scholar

[11] H. Li, W. Y. Yin, K. Banerjee and J. F. Mao, Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects, IEEE Trans. on Electron Dev. 55 (2008) 1328.

DOI: 10.1109/ted.2008.922855

Google Scholar

[12] F. Ferranti, G. Antonini, T. Dhaene and L. Knockaert, Parametric Macromodels for Efficient Design of Carbon Nanotube Interconnects, IEEE Transactions on Electromagnetic Compatibility 56 (2014) 1674.

DOI: 10.1109/temc.2014.2316243

Google Scholar

[13] M. Sahoo, P. Ghosal and H. Rahaman, Modeling and Analysis of Crosstalk Induced Effects in Multiwalled Carbon Nanotube Bundle Interconnects: An ABCD Parameter-Based Approach," IEEE Trans. on Nanotechnol. 14 (2015) 259.

DOI: 10.1109/tnano.2014.2388252

Google Scholar

[14] M. Tang and J. F. Mao, Modeling and Fast Simulation of Multiwalled Carbon Nanotube Interconnects, IEEE Transactions on Electromagnetic Compatibility 57 (2015) 232.

DOI: 10.1109/temc.2014.2376978

Google Scholar

[15] P. U. Sathyakam and P. S. Mallick, Transient analysis of mixed carbon nanotube bundle interconnects, Electronics Letters 47 (2011) 1134.

DOI: 10.1049/el.2011.1705

Google Scholar

[16] P. U. Sathyakam and P. S. Mallick, Inter-CNT capacitance in mixed CNT bundle interconnects for VLSI circuits, Int. J. Electron. 99 (2012) 1439.

DOI: 10.1080/00207217.2012.669721

Google Scholar

[17] P. U. Sathyakam and P. S. Mallick, Towards realisation of mixed carbon nanotube bundles as VLSI interconnects: A review, Nano Communication Networks 3 (2012) 175.

DOI: 10.1016/j.nancom.2012.09.004

Google Scholar

[18] P. U. Sathyakam, A. Karthikeyan, J. K. Rajesh and P. S. Mallick, Reduction of crosstalk in mixed CNT bundle interconnects for high frequency 3D ICs and SoCs, 2014 International Conference on Advances in Electrical Engineering ICAEE 6838461 (2014).

DOI: 10.1109/icaee.2014.6838461

Google Scholar

[19] P. U. Sathyakam and P. S. Mallick, Effect of realistic Inter-CNT Coupling Capacitance in mixed CNT bundle 2011, International Conference on Nanoscience, Technology and Societal implications (NSTSI) 6111807 (2011).

DOI: 10.1109/nstsi.2011.6111807

Google Scholar

[20] M. K. Majumder, J. Kumar and B. K. Kaushik, Process-Induced Delay Variation in SWCNT, MWCNT, and Mixed CNT Interconnects, IETE Journal of Research 61 (2015) 533.

DOI: 10.1080/03772063.2015.1025110

Google Scholar

[21] M. K. Majumder, B. K. Kaushik and S.K. Manhas, Analysis of Delay and Dynamic Crosstalk in Bundled Carbon Nanotube Interconnects, IEEE Transactions on Electromagnetic Compatibility 56 (2014) 1666.

DOI: 10.1109/temc.2014.2318017

Google Scholar

[22] G. F. Close, S. Yasuda, B. Paul, S. Fujita and H. S. P. Wong, A 1 GHz Integrated Circuit with Carbon Nanotube Interconnects and Silicon Transistors, Nano Letters 8 (2008) 706.

DOI: 10.1021/nl0730965

Google Scholar

[23] H. Li, W. Liu, A. M. Cassell, F. Kreupl, and K. Banerjee, Low-Resistivity Long-Length Horizontal Carbon Nanotube Bundles for Interconnect Applications—Part I: Process Development, IEEE Transactions on Electron Devices 60 (2013) 2862.

DOI: 10.1109/ted.2013.2275259

Google Scholar

[24] H. Li, W. Liu, A. M. Cassell, F. Kreupl, and K. Banerjee, Low-Resistivity Long-Length Horizontal Carbon Nanotube Bundles for Interconnect Applications—Part II: Characterization, IEEE Transactions on Electron Devices 60 (2013) 2870.

DOI: 10.1109/ted.2013.2275258

Google Scholar

[25] T. Yamada, T. Saito, D. Fabris and C. Y. Yang, Electrothermal Analysis of Breakdown in Carbon Nanofiber Interconnects, IEEE Electron Device Letters 30 (2009) 469.

DOI: 10.1109/led.2009.2016361

Google Scholar

[26] Y. Stein, D. J. Lewis and B. L. Wardle, Aligned carbon nanotube array stiffness from stochastic three-dimensional morphology, Nanoscale 7 (2015) 19426.

DOI: 10.1039/c5nr06436h

Google Scholar

[27] T. Wang, K. Jeppson and J. Liu, Dry densification of carbon nanotube bundles, Carbon 48 (2010) 3795.

DOI: 10.1016/j.carbon.2010.06.042

Google Scholar

[28] N. Kulshrestha, A. Misra, S. Srinivasan, K. S. Hazra, R. Bajpai, S. Roy, G. Vaidya and D. S. Misra, Effect of top metal contact on electrical transport through individual multiwalled carbon nanotubes, Applied Physics Letters 97 (2010) 222102.

DOI: 10.1063/1.3518063

Google Scholar

[29] Z. Liu, N. Bajwa, L. Ci, S.H. Lee, S. Kar, P. M. Ajayan, and J. Q. Lu, Densification of carbon nanotube bundles for interconnect application 2007 IEEE International Interconnect technology Conference (2007) 201-203.

DOI: 10.1109/iitc.2007.382389

Google Scholar

[30] H. Fiedler, M. Toader, S. Hermann, M. Rennau, R. D. Rodriguez, E. Sheremet, M. Hietschold, D. R.T. Zahn, S. E. Schulz, T. Gessner, Back-end-of-line compatible contact materials for carbon nanotube based interconnects, Microelectronic Engineering 137 (2015).

DOI: 10.1016/j.mee.2014.11.004

Google Scholar

[31] D. Jiang, W. Mu, S. Che, Y. Fu, K. Jeppson and J. Liu, Vertically Stacked Carbon Nanotube-Based Interconnects for Through Silicon Via Application, IEEE Electron Device Letters 36 (2015) 499.

DOI: 10.1109/led.2015.2415198

Google Scholar

[32] S. Vollebgret, F.D. Tichelaarb, H. Schellevisc, C.I.M. Beenakkera, R. Ishiharaa, Carbon nanotube vertical interconnects fabricated at temperatures as low as 350° C, Carbon 71 (2014) 249-256.

DOI: 10.1016/j.carbon.2014.01.035

Google Scholar

[33] K. Lionti, W. Volksen, T. Magbitang, M. Darnon and G. Dubois, Toward Successful Integration of Porous Low-k Materials: Strategies Addressing Plasma Damage, ECS Journal of Solid State Science and Technology 4 (2015) N3071-N3083.

DOI: 10.1149/2.0081501jss

Google Scholar

[34] C. Wu, Y. Li, M. R. Baklanov and K. Croes, Electrical Reliability Challenges of Advanced Low-k Dielectrics, ECS Journal of Solid State Science and Technology 4 (2015) N3065-N3070.

DOI: 10.1149/2.0091501jss

Google Scholar

[35] S. Ma, Y. Wang, Z. Min and L. Zhong, Nano/Mesoporous Polymers Based Low-k Dielectric Materials: A Review on Methods and Advances, Advances in Polymer Technology 32 (2013) 2135821368.

DOI: 10.1002/adv.21358

Google Scholar

[36] R. Farrell, T. Goshal, U. Cvelbar, N. Petkov and M. A. Morris, Advances in Ultra Low Dielectric Constant Ordered Porous Materials, Electrochem. Soc. Interface 20 (2011) 39-46.

DOI: 10.1149/2.f04114if

Google Scholar

[37] B. D. Hatton, K. Landskron, W. J. Hunks, M. R. Bennett, D. Shukaris, D. D. Perovic and G. A. Ozin, Materials Chemistry for low-k materials, Materials Today 9 (2006) 22-31.

DOI: 10.1016/s1369-7021(06)71387-6

Google Scholar

[38] D. Shamriyan, T. Abeli, F. Iacopi and K. Maex, Low-k dielectric materials, Materials Today 7 (2004) 34-39.

Google Scholar

[39] M. R. Baklanov, C. Adelmann, L. Zhao and S. D. Gendta, Advanced Interconnects: Materials, Processing, and Reliability, ECS Journal of Solid State Science and Technology 4 (2015) Y1-Y4.

DOI: 10.1149/2.0271501jss

Google Scholar

[40] P. Verdonck, C. Wang, Q. T. Le, L. Souriau, K. Vanstreels, M. Krishtab, M. Baklanov, Advanced PECVD SiCOH low-k films with low dielectric constant and/or high Young's modulus, Microelectronic Engineering 120 (2014) 225-229.

DOI: 10.1016/j.mee.2013.10.028

Google Scholar

[41] J. P. Gambino, Process Challenges for Integration of Copper Interconnects with Low-k Dielectrics, ECS Transactions 35 (2011) 687-699.

DOI: 10.1149/1.3572313

Google Scholar

[42] J. N. Myers, X. Zhang, J. D. Bielefeld and Z. Chenet, Plasma Treatment Effects on Molecular Structures at Dense and Porous Low‑k SiCOH Film Surfaces and Buried Interfaces, The Journal of Physical Chemistry C 119 (2015) 22514-22526.

DOI: 10.1021/acs.jpcc.5b06725

Google Scholar

[43] Vanstreels, C. Wu and M. R. Baklanov, Mechanical Stability of Porous Low-k Dielectrics, ECS Journal of Solid State Technology 4 (2015) N3058-N3064.

DOI: 10.1149/2.0071501jss

Google Scholar

[44] International Technology Roadmap for Semiconductors: http://www.itrs2.net/2013-itrs.html.

Google Scholar

[45] V. Kumaresan, C. J. Wilson, P. Verdonck, E. V. Besien, F. Lazzarino, V. Truffert, J. Bömmels, Zs. Tokei and T.K.S. Wong, Simulation and measurement of the capacitance benefit of air gap interconnects for advanced technology nodes, Microelectronic Engineering 120 (2014).

DOI: 10.1016/j.mee.2013.12.004

Google Scholar

[46] H. Zahedmanesh, M. Gonzalez, I. Ciofi, K. Croes, J. Boemmels and Z. Tokeei, Numerical analysis of airgap stability under process-induced thermo-mechanical loads, 2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM) (2015).

DOI: 10.1109/iitc-mam.2015.7325610

Google Scholar

[47] G. Stan, C. V. Ciobanu, I. Levin, H. J. Yoo, A. Myers, K. Singh, C. Jezewski, B. Miner and S. W. King, Nanoscale Buckling of Ultrathin Low-k Dielectric Lines during Hard-Mask Patterning, Nano Letters 15 (2015) 3845-3850.

DOI: 10.1021/acs.nanolett.5b00685

Google Scholar

[48] M. Shulaker ; H.-S. P. Wong ; S. Mitra, Computing with Carbon nanotubes, IEEE Spectrum 53 (2016) 26-52.

DOI: 10.1109/mspec.2016.7498155

Google Scholar

[49] A. Rubio, J. L. Corkill and M. L. Cohen, Theory of Graphitic Boron Nitride Nanotubes, Physical Review B 49 (1994) 5081.

DOI: 10.1103/physrevb.49.5081

Google Scholar

[50] X. Blase, A. Rubio, S. G. Louie And M. L. Cohen, Stability and Band Gap Constancy of Boron Nitride Nanotubes, Europhys. Letters 28 (1994) 335.

DOI: 10.1209/0295-5075/28/5/007

Google Scholar

[51] N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie and A. Zetti, Boron Nitride Nanotubes, Science 269 (1995) 966.

DOI: 10.1126/science.269.5226.966

Google Scholar

[52] N. Ohba, K. Miwa, N. Nagasako and A. Fukumoto, First-principles study on structural, dielectric, and dynamical properties for three BN polytypes, Physical Review B 63 (2001) 115207.

DOI: 10.1103/physrevb.77.129901

Google Scholar

[53] G. G. Fuentes, E. B. Palen, T. Pichler, X. Liu, A. Graff, G. Behr, R. J. Kalenczuk, M. Knupfer, and J. Fink, Electronic structure of multiwall boron nitride nanotubes, Physical Review B 67 (2003) 035429.

DOI: 10.1103/physrevb.67.035429

Google Scholar

[54] M. Terauchi, Microscopy Research and Technique 69 (2006) 531.

Google Scholar

[55] J. Wang , C. H. Lee , Y. Bando , D. Golberg and Y. K. Yap, B-C-N Nanotubes and Related Nanostructures (2009).

Google Scholar

[56] S. Kalay, Z. Yilmaz, O. Sen, M. Emanet, E. Kazanc and M. Çulha, Synthesis of boron nitride nanotubes and their applications, Beilstein J. Nanotechnology 6 (2015) 84.

DOI: 10.3762/bjnano.6.9

Google Scholar

[57] X. Wang, A. Pakde, J. Zhang, Q. Weng, T. Zhai, C. Zhi, D. Golberg and Y. Bando, Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties, Nanoscale Research Letters 7 (2012).

DOI: 10.1186/1556-276x-7-662

Google Scholar

[58] T. Terao, C. Zhi, Y. Bando, M. Mitome, C. Tang, and D. Golberg, Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement, J. Phys. Chem. C 114 (2010) 4340.

DOI: 10.1021/jp911431f

Google Scholar

[59] X. Hong, D. Wang and D.D.L. Chung, Boron Nitride Nanotube Mat as a Low-k Dielectric Material with Relative Dielectric Constant Ranging from 1.0 to 1.1, J. of Electronic Materials 45 (2010) 453.

DOI: 10.1007/s11664-015-4123-8

Google Scholar

[60] Y. Chen, J. Zou, S. J. Campbell and G. L. Caer, Boron Nitride Nanotubes: Pronounced Resistance to Oxidation, Appl. Phys. Lett. 84 (2004) 2430.

DOI: 10.1063/1.1667278

Google Scholar

[61] R. Kumar and A. Parashar, Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review, Nanoscale 8 (2016) 22-49.

DOI: 10.1039/c5nr06917c

Google Scholar

[62] Y. C. Chen, S. C. Lee, T. H. Liu and C. C. Chang, Thermal conductivity of boron nitride nanoribbons: Anisotropic effects and boundary scattering, Int. J. Therm. Sci. 94 (2015) 72–78.

DOI: 10.1016/j.ijthermalsci.2015.02.005

Google Scholar

[63] J. Kongsted, A. Osted, L. Jensen, P. O. Åstrand and K. V. Mikkelsen, Frequency-dependent polarizability of boron nitride nanotubes: A theoretical study, J. Phys. Chem. B 105 (2001) 10243.

DOI: 10.1021/jp0121724

Google Scholar

[64] C. W. Chang, W. Q. Han and A. Zettl, Thermal conductivity of B-C-N and BN nanotubes, J. Vac. Sci. Technol. B 23 (2005) 1883.

Google Scholar

[65] C.W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, and A. Zettl, Isotope Effect on the Thermal Conductivity of Boron Nitride Nanotubes , Phy. Rev. Lett. 97 (2006) 085901.

DOI: 10.1103/physrevlett.97.085901

Google Scholar

[66] M. L. Cohen and A. Zettl, The Physics of boron nitride nanotubes, Phys. Today 34 (2010) DOI: http://dx.doi.org/10.1063/1.3518210.

Google Scholar

[67] J. Y. Wang, S. Y. Yang, Y. L. Huang, H. W. Tien, W. K. Chin and C. C. M. Ma, Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization, Journal of Materials Chemistry 21 (2011).

DOI: 10.1039/c1jm11766a

Google Scholar

[68] H. Ohya, V. V. Kudryavtsev, Sl. Semenova, editors. Polyimide membranes—applications, fabrications, and properties. Tokyo: Kodansha Ltd. (1996).

DOI: 10.1201/9780203742969

Google Scholar

[69] D. J. Liaw, K. L. Wang, Y. C. Huang, K. R. Lee, J. Y. Lai, C. S. Ha, Advanced polyimide materials: Syntheses, physical properties and applications, Progress in Polymer Science 37 (2012) 907.

DOI: 10.1016/j.progpolymsci.2012.02.005

Google Scholar

[70] H. W. Ha, A. Choudhury, T. Kamal, D. H. Kim, and S. Y. Park, Effect of Chemical Modification of Graphene on Mechanical, Electrical, and Thermal Properties of Polyimide/Graphene Nanocomposites, Applied Materials and Interfaces 4 (2012) 4623.

DOI: 10.1021/am300999g

Google Scholar

[71] I. H. Tseng, J. C. Chang, S. L. Huang and M. H. Tsai, Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide, Polymer International 62 (2013) 827.

DOI: 10.1002/pi.4375

Google Scholar

[72] M. H. Tsai, I. H. Tseng, Y. F. Liao and J. C. Chiang, Transparent polyimide nanocomposites with improved moisture barrier using graphene, Polymer International 62 (2013) 1302.

DOI: 10.1002/pi.4421

Google Scholar

[73] B. M. Yoo, H. J. Shin, H. W. Yoon, H. B. Park, Graphene and graphene oxide and their uses in barrier polymers, Journal of Applied Polymer Science 39628 (2014) 1 of 23.

Google Scholar

[74] G. M. Joshi and K. Deshmukh, Study of conjugated polymer/graphene oxide nanocomposites as flexible dielectric medium, J. of Matr. Sci. Matr. In Electron. 27 (2016) 3397.

DOI: 10.1007/s10854-015-4172-z

Google Scholar

[75] D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010) 228.

DOI: 10.1039/b917103g

Google Scholar

[76] L. Bai, H. Yan, L. Yuan, C. Liu, Synthesis of functionalized GO for improving the dielectric properties of bismaleimide-triazine resin, J. Polym Res. 23 (2016) 169.

DOI: 10.1007/s10965-016-1071-9

Google Scholar

[77] S. L. James, Metal-organic frameworks, Chem. Soc. Rev. 32 (2003) 276.

Google Scholar

[78] S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels, M.R. Baklanov and E. Saiz, On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films, Chem. Mater. 25 (2012) 27.

DOI: 10.1021/cm302610z

Google Scholar

[79] M. Usman, S. Mendiratta and K. L. Lu, Metal–Organic Frameworks: New Interlayer Dielectric Materials, ChemElectroChem 2 (2015) 786.

DOI: 10.1002/celc.201402456

Google Scholar

[80] O. Shekhah, , J. Liu, R. A. Fischerb and Ch. Woll, MOF thin films: existing and future applications, Chem. Soc. Rev. 40 (2011) 1081-1106.

DOI: 10.1039/c0cs00147c

Google Scholar

[81] A. Betard, and R. A. Fischer, Metal_Organic Framework Thin Films: From Fundamentals to Applications, Chem. Rev. 112 (2012) 1055.

Google Scholar

[82] V. Stavila, A. A. Talin, and M. D. Allendrof, MOF-based electronic and opto-electronic devices, Chem. Soc. Rev. 43 (2014) 5994.

DOI: 10.1039/c4cs00096j

Google Scholar

[83] K. Zagorodniy, G. Seifert, and H. Hermann, Metal-organic frameworks as promising candidates for future ultralow-k dielectrics, Appl. Phy. Lett. 97 (2010) 251905.

DOI: 10.1063/1.3529461

Google Scholar

[84] M. D. Allendorf, A. Schwartzberg, V. Stavila, and A. A. Talin, A roadmap to implementing metal–organic frameworks in electronic devices: challenges and critical directions, Chem. Eur. J. 17 (2011) 11372.

DOI: 10.1002/chem.201101595

Google Scholar

[85] S. Mendiratta, C. Lee, M. Usman and K. L. Lu, Metal–organic frameworks for electronics: emerging second order nonlinear optical and dielectric materials, Sci. Technol. Adv. Mater. 16 (2015) 054204.

DOI: 10.1088/1468-6996/16/5/054204

Google Scholar

[86] L. Z. Chen, Q. J. Pan, X. X. Cao and  F. M. Wang, Crystal Structure, Magnetism, and Dielectric Properties Based on Axial Chirality Ligand 2, 2'-Dinitro-4, 4'-Biphenyldicarboxylic Acid, CrystEngComm 18 (2016) (1944).

DOI: 10.1039/c5ce02426a

Google Scholar

[87] A.C. Dhieb, A. Valkonen, M. Rzaigui, W. Smirani, Synthesis, crystal structure, physico-chemical characterization and dielectric properties of a new hybrid material, 1-Ethylpiperazine-1, 4-diium tetrachlorocadmate, J. of Molecular Structure 1102 (2015).

DOI: 10.1016/j.molstruc.2015.08.044

Google Scholar

[88] H. Guo, M. Wang, J. Liu, S. Zhu, C. Liu, Facile synthesis of nanoscale high porosity IR-MOFs for low-k dielectrics thin films, Microporous and Mesoporous Materials 221 (2016) 40.

DOI: 10.1016/j.micromeso.2015.09.026

Google Scholar

[89] W. J. Li, J. Liu, Z. H. Sun, T. F. Liu, J. Lu, S. Y. Gao, C. He, R. Cao and J. H. Luo, Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic Applications, Nature Communications, 7 (2016) 11830.

DOI: 10.1038/ncomms11830

Google Scholar

[90] A. G. Fernández, J.M. B. García, S. C. García, R. Artiaga, J. L. Beceiro, M.A. S. Rodríguez, M. S. Andújar, Dielectric properties induced by the framework in the hybrid organic–inorganic compounds M(dca)2pyz M = Fe, Co and Zn, Polyhedron 114 (2016).

DOI: 10.1016/j.poly.2015.12.027

Google Scholar

[91] A. Sieradzki, S. Pawlus, S. N. Tripathy, A. Gagor, A. Ciupa, M. Maczka and M. Paluch, Dielectric relaxation behavior in antiferroelectric metal organic framework [(CH3)2NH2][FeIIIFeII(HCOO)6] single crystals, Phys. Chem. Chem. Phys. 18 (2016).

DOI: 10.1039/c6cp00064a

Google Scholar

[92] N. Abhyankar, M. Lee, M. Foley, E. S. Choi, G. Strouse, H. W. Kroto and N. S. Dalal, Efficient synthesis and tailoring of magnetic and dielectric properties of Pb-free perovskite-like ABX3 metal-organic frameworks, Phys. Satus Solidi RRL 1-6 (2016).

DOI: 10.1002/pssr.201600175

Google Scholar

[93] H. Wang, L. Yuan, G. Liang and A. Gu, Tough and thermally resistant cyanate ester resin with significantly reduced curing temperature and low dielectric loss based on developing an efficient graphene oxide/Mn ion metal–organic framework hybrid, RSC Advances 6 (2016).

DOI: 10.1039/c5ra21765b

Google Scholar

[94] B.L. Huang, A.J.H. McGaughey and M. Kaviany, Thermal conductivity of metal-organic framework 5 (MOF-5): Part I. Molecular dynamics simulations, Int. J. of Heat and Mass Transfer 50 (2007) 393.

DOI: 10.1016/j.ijheatmasstransfer.2006.10.002

Google Scholar

[95] B.L. Huang, Z. Ni, A. Millward, A.J.H. McGaughey, C. Uher, M. Kaviany and O. Yaghi, Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement, Int. J. of Heat and Mass Transfer 50 (2007) 405-411.

DOI: 10.1016/j.ijheatmasstransfer.2006.10.001

Google Scholar

[96] H. Babaei, A. J. H. McGaughey and C. E. Wilmer, Effect of pore size and shape on the thermal conductivity of metal-organic frameworks, Chem. Sci. 8 (2017) 583-589.

DOI: 10.1039/c6sc03704f

Google Scholar

[97] L. X. Benedict, S. G. Louie and M. L. Cohen, Static polarizabilities of single-wall carbon nanotubes, Physical Review B 52 (1995) 8541.

DOI: 10.1103/physrevb.52.8541

Google Scholar

[98] F. Torrens, Effect of type, size and deformation on the polarizability of carbon nanotubes from atomic increments, Nanotechnology 15 (2004) S259.

DOI: 10.1088/0957-4484/15/4/027

Google Scholar

[99] B. Kozinsky and N. Marzari, Static Dielectric Properties of Carbon Nanotubes from First Principles, Physical Review Letters 96 (2006) 166801.

DOI: 10.1103/physrevlett.96.166801

Google Scholar

[100] W. Lu, D. Wang and L. Chen, Near-Static Dielectric Polarization of Individual Carbon Nanotubes¸ Nano Letters 7 (2007) 2729-2733.

DOI: 10.1021/nl071208m

Google Scholar

[101] J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer and E. K. Hobbie, Dielectric Response of Aligned Semiconducting Single-Wall Nanotubes, Physical Review Letters 98 (2007).

DOI: 10.1103/physrevlett.98.147402

Google Scholar

[102] X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R.O. Jones and Y. Ando, Smallest Carbon Nanotube Is 3 Å in Diameter, Physical Review Letters 92 (2004)125502.

Google Scholar

[103] L. Guan, K. Suenaga and S. Iijima, Smallest Carbon Nanotube Assigned with Atomic Resolution Accuracy, Nano Letters 8 (2008) 459.

DOI: 10.1021/nl072396j

Google Scholar

[104] S. Amrin and V. D. Deshpande, Mechanical and dielectric properties of carbon nanotubes/poly (vinyl alcohol) nanocomposites, AIP Conference Proceedings 1728 (2016) 020641.

DOI: 10.1063/1.4946692

Google Scholar

[105] M. Yang, H. Zhao, D. He and J. Bai, Largely enhanced dielectric properties of carbon nanotubes/polyvinylidene fluoride binary nanocomposites by loading a few boron nitride nanosheets, Appl. Phys. Lett. 109 (2016) 072906.

DOI: 10.1063/1.4961390

Google Scholar

[106] Y. H. Li and J. T. Lue, Dielectric constants of single-wall carbon nanotubes at various frequencies, J. of Nanosci. And Nanotechnol. 7 (2007) 3185-3188.

DOI: 10.1166/jnn.2007.658

Google Scholar

[107] Q. Iqbal, P. Bernstein, Y. Zhu, J. Rahamim, P. Cebe and C. Staii, Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid-carbon nanotube composites using atomic force microscopy¸ Nanotechnology 26 (2015).

DOI: 10.1088/0957-4484/26/10/105702

Google Scholar

[108] C.L. Poh, M. Mariatti, A. F. M. Noor, O. Sidek, T.P. Chuah, S.C. Chow, Dielectric properties of surface treated multi-walled carbon nanotube/epoxy thin film composites, Composites Part B: Engineering 85 (2016) 50.

DOI: 10.1016/j.compositesb.2015.09.024

Google Scholar

[109] M. R. Baklanov, J. F. d. Marneffe, D. Shamiryan, A. M. Urbanowicz, H. Shi, T. V. Rakhimova, H. Huang and P. S. Ho, Plasma processing of low-k dielectrics, Journal of Applied Physics 113 (2013) 041101.

DOI: 10.1063/1.4765297

Google Scholar

[110] M. K. F. Lo, A. Dazzi, C. A. Marcott, E. Dillon, Q. Hu, K. Kjoller, C. B. Prater, and S. W. King, Nanoscale Chemical-Mechanical Characterization of Nanoelectronic Low-k Dielectric/Cu Interconnects, ECS Journal of Solid State Science and Technology 5 (2016).

DOI: 10.1149/2.0041604jss

Google Scholar

[111] H. Zheng, X. Guo, D. Pei, E. T. Ryan, Y. Nishi and J. L. Shohet, Influence of porosity on electrical properties of low-k dielectrics irradiated with vacuum-ultraviolet radiation, Applied Physics Letters 106 (2016) 192905.

DOI: 10.1063/1.4921271

Google Scholar

[112] L. Zhang, J.-F. de Marneffe, N. Heylen, G. Murdoch, Z. Tokei, J. Boemmels, S. De Gendt and M. R. Baklanov, Damage free integration of ultralow-k dielectrics by template replacement approach, Applied Physics Letters 107 (2015) 092901.

DOI: 10.1063/1.4930072

Google Scholar

[113] A. Gill, S. M. Gates, T. E. Ryan, S. V. Nguyen and D. Priyadarshini, Progress in the development and understanding of advanced low k and ultralow k dielectrics for very large-scale integrated interconnects—State of the art, Applied Physics Reviews 1 (2014).

DOI: 10.1063/1.4861876

Google Scholar

[114] R.J. O.M. Hoofman, Challenges in the implementation of low-k dielectrics in the back-end of line, Microelectronic Engineering 80 (2005) 337.

DOI: 10.1016/j.mee.2005.04.088

Google Scholar

[115] T.T. Olawumi, E. Levrau, M. Krishtab, C. Detavernier, J. W. Bartha, K. Xu, F. Lazzarino and M. R. Baklanov, Modification of Ultra Low-k Dielectric Films by O2 and CO2 Plasmas, ECS Journal of Solid State Science and Technology 4 (2015).

DOI: 10.1149/2.0061501jss

Google Scholar

[116] M. T. Cole, V. Cientanni and W. I. Milne, Horizontal carbon nanotube alignment, Nanoscale 8 (2016) 15836.

DOI: 10.1039/c6nr04666e

Google Scholar

[117] B. Gebhardt, Z. Syrgiannis, C. Backes, R. Graupner, F. Hauke and A. Hirsch, Carbon Nanotube Sidewall Functionalization with Carbonyl Compounds—Modified Birch Conditions vs the Organometallic Reduction Approach, Journal of the American Chemical Society 133 (2011).

DOI: 10.1021/ja2016872

Google Scholar

[118] K. Croes, C. Wu, D. Kocaay, Y. Li, Ph. Rossel, J. Bommels and Zs. Tokei, Current Understanding of BEOL TDDB Lifetime Models, ECS Journal of Solid State Science and Technology 4 (2015) N3094.

DOI: 10.1149/2.0101501jss

Google Scholar

[119] P. U. Sathyakam, A. Karthikeyan and P. S. Mallick, Role of Semiconducting Carbon Nanotubes in Crosstalk Reduction of CNT Interconnects , IEEE Transactions on Nanotechnology 12 (2013) 662.

DOI: 10.1109/tnano.2013.2272598

Google Scholar

[120] I. Karageorgos, J. Ryckaert, R. Gronheid, M. C. Tung, H.-S. P. Wong, E. Karageorgos, K. Croes, J. Bekaert, G. Vandenberghe, M. Stucchi, and W. Dehaenea, Design method and algorithms for directed self-assembly aware via layout decomposition in sub-7 nm Circuits, Journal of Micro/Nano Lithography, MEMS and MOEMS 15 (2016).

DOI: 10.1117/1.jmm.15.4.043506

Google Scholar

[121] E. Redel, Z. Wang, S. Walheim, J. Liu, H. Gliemann and C. Woll, On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films, Applied Physics Letters 103 (2013) 091903.

DOI: 10.1063/1.4819836

Google Scholar

[122] M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. P. Wong, S. Mitra, Carbon nanotube Computer, Nature 501 (2013) 526-530.

DOI: 10.1038/nature12502

Google Scholar

[123] T. N. Theis and H. S. P. Wong, The end of Moore's law: A new beginning for information technology, Computing in Science and Engineering 19 (2017) 41.

Google Scholar

[124] P. U. Sathyakam, D. Choudhary and P.S. Mallick, Mixed CNT bundle interconnects for subthreshold circuits, 2016 International Conference on Information Communication and Embedded Systems ICICES (2016) ISBN: 978-1-5090-2552-7.

DOI: 10.1109/icices.2016.7518845

Google Scholar

[125] M. K. Majumder, P. K. Das and B. K. Kaushik, Delay and crosstalk reliability issues in mixed MWCNT bundle interconnects, Microelectronics Reliability 54 (2014) 2570-2577.

DOI: 10.1016/j.microrel.2014.04.008

Google Scholar

[126] P. U. Sathyakam and P. S. Mallick, Carbon Nanotube Interconnects with Air-Gaps: Effect on Thermal Stability, Delay and Area, Journal of Nano Research 48 (2017) 29-37.

DOI: 10.4028/www.scientific.net/jnanor.48.29

Google Scholar