Analytical Quantum Model for Germanium Channel Gate-All-Around (GAA) MOSFET

Article Preview

Abstract:

The paper proposes analytical model for Gate-All-Around Metal Oxide Semiconductor Field Effect Transistor (GAA-MOSFET) for germanium channel including quantum mechanical effects. It is achieved by solving coupled Schrodinger-Poisson’s equation using variational approach. The proposed model takes quantum confinement effects to obtain charge centroid and inversion charge model. By using these models the quantum version of inversion layer capacitance, inversion charge distribution function and Drain current expressions are modelled and the performance evaluation of the developed model is compared with Silicon channel GAA-MOSFET. Analytically modelled expressions are verified by comparing the model with simulation results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-148

Citation:

Online since:

August 2019

Export:

Price:

* - Corresponding Author

[1] P. Vimala & N.B. Balamurugan, Modelling the centroid and charge density in double-gate MOSFETs including quantum effects,, (2012), 1283-1295.

DOI: 10.1080/00207217.2012.743081

Google Scholar

[2] P. Vimala & N.B. Balamurugan, New Analytical Model for Nanoscale Tri-Gate SOI MOSFETs Including Quantum Effects,, IEEE Journal of the Electron Devices Society, 2(1) (2014), 1-7.

DOI: 10.1109/jeds.2014.2298915

Google Scholar

[3] E. Gnani, S. Reggiani, M. Rudan, G. Baccarani, A new approach to the self-consistent solution of the Schrodinger-Poisson equations in nanowire MOSFETs,, Proceedings of the 30th European Solid-State circuits conference(2014) 177 – 180.

DOI: 10.1109/essder.2004.1356518

Google Scholar

[4] J. B. Roldan, André's Godoy, Francisco Gamiz, M. Balaguer, Modeling the Centroid and the Inversion Charge in Cylindrical Surrounding Gate MOSFETs, Including Quantum Effects,, IEEE Transactions on Electron Devices,55 (2008) 411 – 416.

DOI: 10.1109/ted.2007.911096

Google Scholar

[5] Bastien Cousin, Olivier Rozeau, Marie-Anne Jaud, Jalal Jomaah, Compact modeling of quantization effects for cylindrical gate-all-around MOSFETs,, 2009 10th International Conference on Ultimate Integration of Silicon (2009)269 – 272.

DOI: 10.1109/ulis.2009.4897588

Google Scholar

[6] S. K. Chin, Valeri Ligatchev, Subhash C. Rustagi, Hui Zhao, Ganesh S. Samudra, Navab Singh, G.Q. Lo ,Dim-Lee Kwong, Self-Consistent Schrödinger–Poisson Simulations on Capacitance–Voltage Characteristics of Silicon Nanowire Gate-All-Around MOS Devices with Experimental Comparisons,, IEEE Transactions on Electron Devices56(2009)2312 - 2318.

DOI: 10.1109/ted.2009.2028402

Google Scholar

[7] Juan Bautista Roldan's LabE. Moreno, Juan Bautista Roldan, Francisco G. Ruiz, Francisco Gamiz, An analytical model for square GAA MOSFETs including quantum effects,, Solid-State Electronics,54(2010)1463-1469.

DOI: 10.1016/j.sse.2010.05.032

Google Scholar

[8] E. Dastjerdy, Rahim Ghayour, Hojjat Sarvari, 3D quantum mechanical simulation of square nanowire MOSFETs by using NEGF method,, Central European Journal of Physics 9 (2011) 472-481.

DOI: 10.2478/s11534-010-0097-6

Google Scholar

[9] Alessandro S. Spinelli, Christian Monzio Compagnoni, Alessandro Maconi, Salvatore Maria Amoroso , Andrea L. Lacaita, Quantum-Mechanical Charge Distribution in Cylindrical Gate-All-Around MOS Devices,, IEEE Transactions on Electron Devices(2012)1837 – 1843.

DOI: 10.1109/ted.2012.2192275

Google Scholar

[10] Regiane Ragi , Rafael Vinicius Tayette da Nobrega, Ulysses Rondina Duarte , An Explicit Quantum-Mechanical Compact Model for the I-V Characteristics of Cylindrical Nano wire MOSFETs,, IEEE Transactions on Nanotechnology15(2016)627 – 634.

DOI: 10.1109/tnano.2016.2567323

Google Scholar

[11] Arun Kumar , Shiv Bhushan , Pramod Kumar Tiwari, A Threshold Voltage Model of Silicon-Nanotube-Based Ultrathin Double Gate-All-Around (DGAA) MOSFETs Incorporating Quantum Confinement Effects,, IEEE Transactions on Nanotechnology 16(2017)868 – 875.

DOI: 10.1109/tnano.2017.2717841

Google Scholar

[12] Ahmed Abdelmoneam, Benjamin Iñiguez, Mostafa Fedawy, Compact Modelling of Quantum Confinement in III-V Gate All Around Nanowire MOSFET,, 2018 Spanish Conference on Electron Devices(CDE)(2018)1 – 4.

DOI: 10.1109/cde.2018.8597131

Google Scholar

[13] A. Abdelmoneam, B. Iñiguez, Compact modeling for quantum confinement for InGaAs Nano wire gate all around MOSFET,, Electronics Letters, 54(2018) 1348 – 1350.

DOI: 10.1049/el.2018.5075

Google Scholar

[14] P. Vimala, N.B. Balamurugan, Modeling and simulation of centroid and inversion charge density in cylindrical surrounding gate MOSFETs including quantum effects,, Journal of Semiconductors, 34(2013) 114001-6.

DOI: 10.1088/1674-4926/34/11/114001

Google Scholar

[15] Fatimah A. Noor, Christoforus Bimo, and Khairurrijal, Analytical Quantum Drain Current Model in Undoped Cylindrical Surrounding-Gate MOSFETS,, Journal of Telecommunication, Electronic and Computer Engineering (2017) 100.

Google Scholar

[16] ATLAS: Device simulation software. Silvaco Int, Santa Clara (2012).

Google Scholar