Quantum Mechanical Analysis on Modeling of Surface Potential and Drain Current for Nanowire JLFET

Article Preview

Abstract:

This paper presents an analytical model for ultra scaled symmetric double gate (SDG) nanowire junctionless field effect transistor (JLFET), which includes charge quantization in all the regions of operation. This model is based on a first-order correction for the confined energies obtained by solving the Schrodinger’s equation. The model is able to predict the quantum mechanical effects (QME) on the surface potential, drain current and transconductance for a highly doped and extremely thin silicon layer of thickness down to 4nm. The results obtained are validated by comparing with GENIUS 3D TCAD quantum simulations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-134

Citation:

Online since:

November 2020

Export:

Price:

* - Corresponding Author

[1] J. P. Colinge et al., Nanowire transistors without junctions,, Nat. Nanotechnol., vol. 5, no. 3, p.225–229, 2010,.

Google Scholar

[2] K. Chandra Deva Sarma and S. Sharma, An approach for complete 2-D analytical potential modelling of fully depleted symmetric double gate junction less transistor,, J. Comput. Electron., 2015,.

DOI: 10.1007/s10825-015-0700-6

Google Scholar

[3] Z. Chen et al., Surface-potential-based drain current model for long-channel junctionless double-gate MOSFETs,, IEEE Trans. Electron Devices, vol. 59, no. 12, p.3292–3298, 2012,.

DOI: 10.1109/ted.2012.2221164

Google Scholar

[4] F. Jazaeri, L. Barbut, A. Koukab, and J. M. Sallese, Analytical model for ultra-thin body junctionless symmetric double gate MOSFETs in subthreshold regime,, Solid. State. Electron., vol. 82, p.103–110, 2013,.

DOI: 10.1016/j.sse.2013.02.001

Google Scholar

[5] N. Bora and R. Subadar, A Complete Analytical Model of Surface Potential and Drain Current for an Ultra Short Channel Double Gate Asymmetric Junctionless Transistor,, J. Nanoelectron. Optoelectron., vol. 14, no. 9, p.1283–1289, Jul. 2019,.

DOI: 10.1166/jno.2019.2643

Google Scholar

[6] R. Trevisoli, M. A. Pavanello, C. E. Capovilla, S. Barraud, and R. T. Doria, Analytical Model for Low-Frequency Noise in Junctionless Nanowire Transistors,, IEEE Trans. Electron Devices, 2020,.

DOI: 10.1109/ted.2020.2986141

Google Scholar

[7] B. Yu, L. Wang, Y. Yuan, P. M. Asbeck, and Y. Taur, Scaling of nanowire transistors,, IEEE Trans. Electron Devices, vol. 55, no. 11, p.2846–2858, 2008,.

DOI: 10.1109/ted.2008.2005163

Google Scholar

[8] V. P. Trivedi and J. G. Fossum, Quantum-mechanical effects on the threshold voltage of undoped double-gate MOSFETs,, IEEE Electron Device Lett., vol. 26, no. 8, p.579–582, 2005,.

DOI: 10.1109/led.2005.852741

Google Scholar

[9] L. Ge, F. Gámiz, G. O. Workman, and S. Veeraraghavan, On the gate capacitance limits of nanoscale DG and FD SOI MOSFETs,, IEEE Trans. Electron Devices, vol. 53, no. 4, p.753–758, Apr. 2006,.

DOI: 10.1109/ted.2006.871412

Google Scholar

[10] D. Munteanu, J. Autran, X. Loussier, S. Harrison, R. Cerutti, and T. Skotnicki, Quantum Short-channel Compact Modelling of Drain-Current in Double-Gate MOSFET,, vol. 50, p.680–686, 2006,.

DOI: 10.1016/j.sse.2006.03.038

Google Scholar

[11] E. N. Cho, Y. H. Shin, and I. Yun, A compact quantum correction model for symmetric double gate metal-oxide-semiconductor field-effect transistor,, J. Appl. Phys., vol. 116, no. 17, p.10–15, 2014,.

DOI: 10.1063/1.4901000

Google Scholar

[12] N. Bora and R. K. Baruah, Quantum mechanical treatment on modeling of drain current, capacitances and transconductances for thin film undoped symmetric DG MOSFETs,, IEEE Int. Conf. Nanosci. Technol. Soc. Implic. NSTSI11, p.1–6, 2011,.

DOI: 10.1109/nstsi.2011.6111994

Google Scholar

[13] J. P. Duarte, M. S. Kim, S. J. Choi, and Y. K. Choi, A compact model of quantum electron density at the subthreshold region for double-gate junctionless transistors,, IEEE Trans. Electron Devices, vol. 59, no. 4, p.1008–1012, 2012,.

DOI: 10.1109/ted.2012.2185827

Google Scholar

[14] S. Gupta, B. Ghosh, and S. B. Rahi, Compact analytical model of double gate junction-less field effect transistor comprising quantum-mechanical effect,, J. Semicond., vol. 36, no. 2, p.1–6, 2015,.

DOI: 10.1088/1674-4926/36/2/024001

Google Scholar

[15] M. Chanda, S. De, and C. K. Sarkar, Modeling of characteristic parameters for nano-scale junctionless double gate MOSFET considering quantum mechanical effect,, J. Comput. Electron., vol. 14, no. 1, p.262–269, Mar. 2015,.

DOI: 10.1007/s10825-014-0648-y

Google Scholar

[16] N. Bora, P. Das, and R. Subadar, An analytical universal model for symmetric double gate junctionless transistors,, J. Nano- Electron. Phys., vol. 8, no. 2, p.8–11, 2016,.

Google Scholar

[17] D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics, 2nd ed. Pearson Prentice Hall, (2004).

Google Scholar

[18] G. Baccarani and S. Reggiani, A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects,, IEEE Trans. Electron Devices, 1999,.

DOI: 10.1109/16.777154

Google Scholar

[19] F. Stern and W. E. Howard, Properties of semiconductor surface inversion layers in the electric quantum limit,, Phys. Rev., vol. 163, no. 3, p.816–835, 1967,.

DOI: 10.1103/physrev.163.816

Google Scholar

[20] H. Haug and S. W. Koch, Quantum theory of the optical and electronic properties of semiconductors, fifth edition. World Scientific Publishing Co., (2009).

Google Scholar

[21] M. Shalchian, F. Jazaeri, and J. M. Sallese, Charge-Based Model for Ultrathin Junctionless DG FETs, Including Quantum Confinement,, IEEE Trans. Electron Devices, vol. 65, no. 9, p.4009–4014, 2018,.

DOI: 10.1109/ted.2018.2854905

Google Scholar

[22] Cogenda Pte Ltd., Genius, 3-D Device Simulator, Reference Manual., 1.9.3. Singapore, (2014).

Google Scholar

[23] A. J. Garcia-Loureiro et al., Implementation of the density gradient quantum corrections for 3-d simulations of multigate nanoscaled transistors,, IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 30, no. 6, p.841–851, 2011,.

DOI: 10.1109/tcad.2011.2107990

Google Scholar