The Effect of Graphene Oxide Dispersion on Structure-Property Relationships in Graphene-Based Polymer Nanocomposites

Article Preview

Abstract:

The performance of graphene/polymer nanocomposites depends on many factors but the major factor is a nanoparticles dispersion and distribution into the host matrix. The present work investigates the effect of the dispersion of graphene oxide upon the structure-property relations in metallocene linear low density polyethylene (PE), homo polypropylene (PP), and blends thereof. These nanocomposites were prepared by solvent processing, where DMF and o-xylene were used as solvents for Graphene Oxide (GO) powder and the polymers respectively, before the two components were combined to form a well-mixed initial state. Characterization of the structure and crystallization of the nanocomposites was carried out by small- and wide-angle X-ray scattering and diffraction (SAXS and WAXD). The chemical structures were characterized by Fourier transform infrared spectroscopy (FTIR) and by Raman spectroscopy, and the latter used to calculate the ID/IG value for a pure GO samples. The thermal properties of the resulting nanocomposites were investigated by DSC and TGA in order to obtain Melting temperature ( ), crystallization temperature ( ) and degree of crystallinity ( ) as well as a range of degradation temperatures. The effect of GO on the mechanical properties was studied via the ultimate tensile strength and elastic modulus.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-121

Citation:

Online since:

December 2020

Authors:

Export:

Price:

* - Corresponding Author

[1] A. Geim and K. Novoselov, The rise of grapheme, Nat Mater.6( 2007) 183.

Google Scholar

[2] J. Potts, D. Dreyer, C. Bielawski and R. Ruoff, Graphene-based polymer nanocomposites, Polymer.52(2011) 5.

DOI: 10.1016/j.polymer.2010.11.042

Google Scholar

[3] P. Song, Z. Cao, Y. Cai, L. Zhao,Z. Fang and S. Fu , Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties, Polymer.52 ( 2011) 18.

DOI: 10.1016/j.polymer.2011.06.045

Google Scholar

[4] H. Mahmood, A. Habib, M. Mujahid, M. Tanveer, S. Javed and A. Jamil, Band gap reduction of titania thin films using XXXrapheme nanosheets, Materials Science in Semiconductor Processing. 24(2014) 193–199.

DOI: 10.1016/j.mssp.2014.03.038

Google Scholar

[5] D. Evanoff and G. Chumanov, Synthesis and optical properties of silver nanoparticles and arrays, ChemPhysChem. 7( 2005) 1221.

DOI: 10.1002/cphc.200500113

Google Scholar

[6] Z. Xu and C. Gao,  Graphene chiral liquid crystals and macroscopic assembled fibres, Nature Communications .2(2011) 571.

DOI: 10.1038/ncomms1583

Google Scholar

[7] S. Kim, I. Do and L. Drzal, Multifunctional xGnP/LLDPE nanocomposites prepared by solution compounding using various screw rotating systems, Macromolecular Materials and Engineering. (2009) 196.

DOI: 10.1002/mame.200800319

Google Scholar

[8] A. Milani, , D. Gonzlez, R. Quijada, N. Basso, L. Cerrada, D. Azambuja and G. Galland, Polypropylene/XXXrapheme nanosheet nanocomposites by in situ polymerization: Synthesis, characterization and fundamental properties, Composites Science and Technology. 84(2013) 1.

DOI: 10.1016/j.compscitech.2013.05.001

Google Scholar

[9] H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang, and Q. Fu, Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials, Progress in Polymer Science. 39(2014) 627.

DOI: 10.1016/j.progpolymsci.2013.07.007

Google Scholar

[10] Z. Spitalsky, D. Tasis, K. Papagelis and C. Galiotis, Carbon nanotube polymer composites: chemistry, processing, mechanical and electrical properties, Progress in Polymer Science.35 (2010) 357.

DOI: 10.1016/j.progpolymsci.2009.09.003

Google Scholar

[11] M. Pluta, M. Alexandre, S. Blacher, P Dubois and R. Jerome, Metallocene-catalyzed polymerization of ethylene in the presence of graphite. II. Structure and electrical properties of the composites, Polymer.24(2001) 9293.

DOI: 10.1016/s0032-3861(01)00469-4

Google Scholar

[12] J. Dai, X. Xu, J. Yang, N. Zhang, T. Huang, Y. Wang, Greatly enhanced porosity of stretched polypropylene/graphene oxide composite membrane achieved by adding pore-forming agent, C. RSC Adv.5 (2015)520663.

DOI: 10.1039/c4ra13298j

Google Scholar

[13] R. Layek, S. Samanta and A., The physical properties of sulfonated graphene/poly(vinyl alcohol) composites, Carbon. 50(2012) 815–827.

DOI: 10.1016/j.carbon.2011.09.039

Google Scholar

[14] J. Wu, G. Huang, H. Li, S. Wu, Y. Liu and J. Zheng, Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content, Polymer (United Kingdom).54(2013) 1930–(1937).

DOI: 10.1016/j.polymer.2013.01.049

Google Scholar

[15] S. Abdullah and M. Ansari, Mechanical properties of graphene oxide (GO)/epoxy composites, HBRC Journal.11(2015) 151.

DOI: 10.1016/j.hbrcj.2014.06.001

Google Scholar

[16] P. Bhawal, S. Ganguly, T. Chaki and N. Das, Synthesis and characterization of graphene oxide filled ethylene methyl acrylate hybrid nanocomposites, RSC Advances.25 (2016), 20781.

DOI: 10.1039/c5ra24914g

Google Scholar

[17] J. Potts, D. Dreyer, C. Bielawski and R. Ruoff, Graphene-based polymer Nanocomposites, Polymer. 52 (2011) 5.

DOI: 10.1016/j.polymer.2010.11.042

Google Scholar

[18] B. Goderis, H. Reynaers, M. Koch and V. Mathot, Use of SAXS and linear correlation functions for the determination of the crystallinity and morphology of semi-crystalline polymers. Application to linear polyethylene, J. Polym. Sci., Phys.37( 1999)1715.

DOI: 10.1002/(sici)1099-0488(19990715)37:14<1715::aid-polb15>3.0.co;2-f

Google Scholar

[19] M. Fatnassi, F. Larbi and J. Halary, Quantitative analysis of semicrystalline blends SAXS data: Theoretical modeling versus linear correlation function, International Journal of Polymer Science.( 2010).

DOI: 10.1155/2010/829752

Google Scholar

[20] R. Chandra and R. Rustgi, Biodegradation of maleated linear low-density polyethylene and starch blends, Polymer Degradation and Stability .56(1997) 185.

DOI: 10.1016/s0141-3910(96)00212-1

Google Scholar

[21] M. Sarker, M. Rashid and M. Molla, Abundant High-Density Polyethylene (HDPE-2) Turns into Fuel by Using of HZSM-5 Catalyst, Journal of Fundamentals of Renewable Energy and Applications. 1(2011) 12.

DOI: 10.4303/jfrea/r110201

Google Scholar

[22] A. Rjeb, L. Tajounte, M. Chafik El Idrissi, S. Letarte, A. Adnot, D. Roy and J. Kaloustian, IR spectroscopy study of polypropylene natural aging, Journal of Applied Polymer Science.77( 2000) 1742–1748.

DOI: 10.1002/1097-4628(20000822)77:8<1742::aid-app11>3.0.co;2-t

Google Scholar

[23] J. Lin, Y. Pan, C. Liu, C. Huang, C. Hsieh, C. Chen, Z. Lin and C. Lou, Preparation and Compatibility Evaluation of Polypropylene/High Density Polyethylene Polyblends, Materials.8( 2015) 8850–8859.

DOI: 10.3390/ma8125496

Google Scholar

[24] T. Rattana, S. Chaiyakun, N. Witit-Anun, N. Nuntawong, P. Chindaudom, S. Oaew and P. Limsuwan, Preparation and characterization of graphene oxide nanosheets, Procedia Engineering.32(2012) 759–764.

DOI: 10.1016/j.proeng.2012.02.009

Google Scholar

[25] S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska and M. Setkiewicz, Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors, Sensors (Basel, Switzerland).16(2015) 103.

DOI: 10.3390/s16010103

Google Scholar

[26] M. Khenfouch, Morphological, Vibrational and Thermal Properties of Confined Graphene Nanosheets in an Individual Polymeric Nanochannel by Electrospinning, Graphene,.1(2012) 15.

DOI: 10.4236/graphene.2012.12002

Google Scholar

[27] M. Liebscher, M. Blais, P. Pötschke and G. Heinrich, A morphological study on the dispersion and selective localization behavior of graphene nanoplatelets in immiscible polymer blends of PC and SAN, Polymer (United Kingdom).54(2013) 5875–5882.

DOI: 10.1016/j.polymer.2013.08.009

Google Scholar

[28] S. Eigler, C. Dotzer and A. Hirsch, Visualization of defect densities in reduced graphene oxide, Carbon.50(2012), 3666–3673.

DOI: 10.1016/j.carbon.2012.03.039

Google Scholar

[29] S. Zhou and A. Bongiorno, Origin of the chemical and kinetic stability of graphene oxide, Scientific Reports.3(2013) 2484.

Google Scholar

[30] G. Huang, Z. Ni, G. Chen, W. Pang and Y. Zhao, Effects of gamma irradiation andaccelerated aging on GO/UHMWPE nanocomposites, International Journal of Polymer Analysis and Characterization, 5341(2016) 1-11.

DOI: 10.1080/1023666x.2016.1168060

Google Scholar

[31] S. Ye, Y. Cao, J. Feng and P. Wu, Temperature-dependent compatibilizing effect ofgraphene oxide as a compatibilizer for immiscible polymer blends, RSC Advances.21(2013) 7987.

DOI: 10.1039/c3ra40253c

Google Scholar

[32] H. Thomas, The structure and reactivity of graphene oxide, Ph.D. Thesis, the University of Warwick, Warwick, UK, July (2015).

Google Scholar

[33] T. Gopakumar and D. Pagé, Polypropylene/graphite nanocomposites by thermo‐kinetic mixing, Polymer Engineering & Science. 6(2004) 1162.

DOI: 10.1002/pen.20109

Google Scholar

[34] C. Huang, C. Lou, C. Liu, C. Huang, X. Song and J. Lin, Polypropylene/Graphene and Polypropylene/Carbon Fiber Conductive Composites: Mechanical, Crystallization and Electromagnetic Properties, Applied Sciences.4( 2015) 1196.

DOI: 10.3390/app5041196

Google Scholar

[35] Suñer, R. Joffe, J. Tipper and N. Emami, Ultra high molecular weight polyethylene/graphene oxide nanocomposites: Thermal, mechanical and wettability characterisation, Composites Part B: Engineering. 78 (2015) 185.

DOI: 10.1016/j.compositesb.2015.03.075

Google Scholar

[36] P. Noorunnisa Khanam, M AlMaadeed, M. Ouederni, B. Mayoral, A. Hamilton and D. Sun, D, Effect of two types of graphene nanoplatelets on the physico–mechanical properties of linear low–density polyethylene composites, Advanced Manufacturing: Polymer & Composites Science. 2 (2016) 67–73.

DOI: 10.1080/20550340.2016.1235768

Google Scholar

[37] G. Kucinskis, G. Bajars and J. Kleperis , Graphene in lithium ion battery cathode materials: A review, Journal of Power Sources. 240(2013) 66–79.

DOI: 10.1016/j.jpowsour.2013.03.160

Google Scholar

[38] A. Lerf, H. He, M. Forster and J. Klinowski, Structure of Graphite Oxide Revisited, Journal of Physical Chemistry B. 23(1998) 4477–4482.

DOI: 10.1021/jp9731821

Google Scholar

[39] A. Aref, A. Entezami, H. Erfan-Niya and E. Zaminpayma, Thermophysical properties of paraffin-based electrically insulating nanofluids containing modified graphene oxide, Journal of Materials Science.5 (2017) 2642–2660.

DOI: 10.1007/s10853-016-0556-6

Google Scholar

[40] C. Punckt, F. Muckel, S. Wolff, I. Aksay, C. Chavarin, G. Bacher and W. Mertin, The effect of degree of reduction on the electrical properties of functionalized graphene sheets, Applied Physics Letters. 2 (2013) 1–6.

DOI: 10.1063/1.4775582

Google Scholar

[41] G. Eda, C. Mattevi, H. Yamaguchi, H. Kim and M. Chhowalla, Insulator to semimetal transition in graphene oxide, Journal of Physical Chemistry C. 35(2009) 15768–15771.

DOI: 10.1021/jp9051402

Google Scholar

[42] C. Huang, C. Lou, C. Liu, C. Huang, X. Song and J. Lin, Polypropylene/Graphene and Polypropylene/Carbon Fiber Conductive Composites: Mechanical, Crystallization and Electromagnetic Properties, Applied Sciences. 4( 2015) 1196.

DOI: 10.3390/app5041196

Google Scholar

[43] P. Chammingkwan, K. Matsushita, T. Taniike and M. Terano, Enhancement in mechanical and electrical properties of polypropylene using graphene oxide grafted with endfunctionalized polypropylene, Materials.4( 2016)240.

DOI: 10.3390/ma9040240

Google Scholar

[44] C. Wan and B. Chen, Reinforcement and interphase of polymer/graphene oxide Nanocomposites, Journal of Materials Chemistry. 8(2012) 3637-3646.

Google Scholar

[45] Y. Cao, J. Feng and P. Wu, Polypropylene-grafted graphene oxide sheets as multifunctional compatibilizers for polyolefin-based polymer blends, Journal of Materials Chemistry.30(2012) 14997-15005.

DOI: 10.1039/c2jm31477k

Google Scholar

[46] K. L. Johnson, K. Kendall and A. D. Roberts , Proceedings of the Royal Society of London. 324 (1971) 301–313.

Google Scholar

[47] M. Ersoy, & E. Onder, Mechanical and Thermal Behaviors of Polypropylene - MultiWalled Carbon Nanotube Nanocomposite Monofilaments, Fibres and Textiles in Eastern Europe, 98(2013) 22–27.

Google Scholar