Electroplated Nickel Composites with Micron- to Nano-Sized Particles

Article Preview

Abstract:

Electroplated nickel coatings provide ductility, excellent corrosion resistance and good wear resistance, which qualifies them to meet complex demands of engineering, microtechnology and microelectronics. The co-deposition of particles is a promising alternative to deposit layers with adequate microstructure and properties avoiding the rise of residual stress. The incorporation of the sufficient quantity of particles, monodisperse distribution and downsizing to nanometre scale affect the amount of strengthening by dispersion hardening. To avoid agglomeration in the electroplating bath as well as in the layer is a challenge which has been met by simple Watts nickel electrolyte with a minimum of organic additives and adequate bath agitation comprising sonication, i.e. the exposure of the bath to high-frequency sound waves. Well-dispersed hard particles (titanium oxide and silicon carbide) were incorporated in nickel films. The focus was set on the correlation between the gained microstructure of the composites with particles from micron to nanometre scale and the electrochemical and mechanical properties. Corrosion was quantified from polarisation curves and volumetric erosion measurements. Wear resistance was evaluated by scratch energy density studies, oscillating sliding wear testing and cavitation wear testing and compared to indentation hardness results. Sonication and particle downsizing result in matrix grain refinement and dispersion hardening. Incorporation of different particles with respect to different material and size proved to meet different demands. Submicron TiO2 is best for high corrosion resistance, sonicated nickel without particle incorporation is best for high abrasion resistance, nano TiO2 is best for oscillating sliding wear resistance and submicron SiC is best for cavitation wear resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

283-309

Citation:

Online since:

June 2008

Export:

[1] A. Hovestad and L.J.J. Jansen: J. Appl. Electrochem. 25 (1995), p.519.

Google Scholar

[2] Y. Müller, P. Schmutz, Th. Lampke and A. Leopold: Metalloberfläche 60 (2006) 6, p.40.

Google Scholar

[3] C. Kerr, D. Barker and F. Wattslsh: Trans. Inst. Met. Finish. 78 (2000) 5, p.171.

Google Scholar

[4] N. Guglielmi: J. Electrochem. Soc. 119 (1972) 8, p.1009.

Google Scholar

[5] J.P. Celis, J.R. Roos, C. Buelens and J. Fransaer: Trans. Inst. Met. Finish. 69 (1991) 4, p.133.

Google Scholar

[6] E. Broszeit, G. Heinke and H. Wiegand: Metall 25 (1971), p.470.

Google Scholar

[7] B. Wielage, S. Steinhäuser, Th. Lampke, U. Hofmann and C. Jakob: Metalloberfläche 57 (2003), p.25.

Google Scholar

[8] W. Ruythooren, K. Attenborough, S. Beerten, P. Merken, J. Fransaer, E. Beyne, C. Van Hoof, J. De Boeck and J.P. Celis: J. Micromech. Microeng. 10 (2000), p.101.

DOI: 10.1088/0960-1317/10/2/301

Google Scholar

[9] K.S. Teh, Y.T. Cheng and L. Lin: J. Micromech. Microeng. 15 (2005), p.2205.

Google Scholar

[10] M.E. Hyde and R.G. Compton: J Electronal Chem 531 (2002), p.19.

Google Scholar

[11] S.H. Yeo, J.H. Choo and K.H.A. Sim: J. Micromech. Microeng. 12 (2002), p.271.

Google Scholar

[12] C.E. Brennen: Cavitation and Bubble Dynamics. Oxford University Press, New York 1995. ISBN 0195094093. Official Persistent URL.

Google Scholar

[13] A. Tiehm, K. Nickel and U. Neis: Wattst. Sci. Tech. 36 (1997) 11, p.121.

Google Scholar

[14] Th. Lampke, B. Wielage, D. Dietrich and A. Leopold: Appl. Surf. Sci. 253 (2006) 5, p.2399.

Google Scholar

[15] S.L. Kuo, Y.C. Chen, M.D. Ger and W.H. Hwu: Mat. Chem. Phys. 86 (2004), p.5.

Google Scholar

[16] K. Kobayashi, A. Chiba and N. Minami: Ultrasonics. 38 (2000), p.676.

Google Scholar

[17] B. Szczygiel and M. Kolodziej: Trans. Inst. Met. Finish. 83 (2005) 4, p.181.

Google Scholar

[18] S. Steinhäuser, B. Wielage and Th. Lampke: Physico-Chemical Mechanics of Materials, 4 (2004), p.489.

Google Scholar

[19] I. Garcia, A. Conde, G. Langelaan, J. Fransaer and J.P. Celis: Corros. Sci. 45 (2003), p.1173.

Google Scholar

[20] S. Steinhäuser and B. Wielage: Surf. Eng. 13 (1997), p.289.

Google Scholar

[21] V. Medeliene: Surf. Coat. Technol. 154 (2002), p.104.

Google Scholar

[22] N.K. Shrestha, K. Sakurada, M. Masuko and T. Saji: Surf. Coat. Technol. 140 (2001), p.175.

Google Scholar

[23] I. Benea, P.L. Bonora, A. Borello and S. Martelli: Wear 249 (2002), p.995.

Google Scholar

[24] N. Periene, A. Cesuniene and L. Taicas: Plating Surf. Finish. 80 (1993), P 73.

Google Scholar

[25] C. Malak: Metalloberfläche 48 (1994) 4, p.232.

Google Scholar

[26] E. Gnass: Metalloberfläche 54 (2005) 5, p.26.

Google Scholar

[27] I. Garcia, J. Fransaer and J. -P. Celis: Surf. Coat. Technol. 148 (2001), p.171.

Google Scholar

[28] L. Benea, R.L. Bonora, et al.: Mater. Corros. 53 (2002) 1, p.23.

Google Scholar

[29] F. Erler, C. Jacob, H. Romanus, et al.: Electrochim. Acta 48 (2003), p.3063.

Google Scholar

[30] E.W. Brooman: Galvanotechnik 12 (2005), p.2843.

Google Scholar

[31] L. Du, B. Xu and S. Dong, et al.: Wear 257 (2004), p.1058.

Google Scholar

[32] D. Kalyanaraman: Bull. Electrochem. 5 (1989) 9, p.700.

Google Scholar

[33] B. Reinhold: Ein Beitrag zur Charakterisierung und zur Bewertung des Abrasionsverhaltens von Verschleißschutzschichten. Dissertation, TU Karl-Marx-Stadt, (1990).

Google Scholar

[34] K. Taube: Mat. -wiss. und Werkstofftechnik, 31 (2000), p.616.

Google Scholar

[35] P.J. Burnett and D.S. Rickerby: Thin solid films, 154 (1987), p.403.

Google Scholar

[36] R. Junghans and J. Neukirchner: 13th International Colloquium Tribology, Ostfildern January 2002, Proceedings Vol. 3, p (1959).

Google Scholar

[37] L. Du and B. Xu: Wear, 257 (2004) 9/10, p.1058.

Google Scholar

[38] S. Steinhäuser, Th. Lampke and B. Wielage: Materialwiss. und Werkstofftech. 34 (2003), p.633.

Google Scholar

[39] C.J. Lin, K.C. Chen and J.L. He: Wear 261 (2006) 11-12, p.1390.

Google Scholar

[40] D. Drozdz, R.K. Wunderlich and H. -J. Fecht: Wear 262 (2007) 1-2, p.176.

Google Scholar

[41] H. Fischer: Elektrolytische Abscheidung und Elektronenkristallisation in Metallen, SpringerVerlag, Berlin (1954).

Google Scholar

[42] Th. Lampke, S. Steinhäuser, D. Richter and B. Wielage: Mat. -Wiss. u. Werkstofftech. 38 (2007) 1, p.23.

DOI: 10.1002/mawe.200600073

Google Scholar

[43] J. Amblard, I. Epelboin, M. Froment and G. Maurin: J. Appl. Electrochem. 9 (1979) 2, p.233.

Google Scholar

[44] B. Wielage, H. Podlesak, S. Steinhäuser and D. Nickelmann: Mess- und Prüftechnik 52 (1998), p.386.

Google Scholar

[45] M. J. Pomeroy and V. J. Cunnane: J. Electrochem. Soc. 150 (2003) 5, p.356.

Google Scholar

[46] C.S. Lin and K.C. Huang: J. Appl. Electrochem. 34 (2004), p.1013.

Google Scholar

[47] B. Szczygiel: Metalloberfläche 48 (1994), p.239.

Google Scholar

[48] Th. Lampke, A. Leopold, D. Dietrich, G. Alisch and B. Wielage: Surface and Coating Technology, 201 (2006), p.3510.

DOI: 10.1016/j.surfcoat.2006.08.073

Google Scholar

[49] Th. Lampke, A. Leopold, D. Dietrich, H. Podlesak, G. Alisch, S. Steinhäuser and B. Wielage: Tagungsband WTK 2006, Chemnitz, 7. -8. 09. 2006, p.483.

Google Scholar

[50] Th. Lampke, A. Leopold, D. Dietrich, H. Podlesak and B. Wielage: Mat. -wiss. u. Werkstofftech. 37 (2006) 12, p.1039.

DOI: 10.1002/mawe.200600087

Google Scholar

[51] M. Dular, B. Stoffel and B. Širok: Wear, 261 (2006) 5-6, p.642.

Google Scholar

[52] J. K. Kristensen, I. Hansson and K. A. Morch: J. Phys. D: Appl. Phys. 11 (1978), p.899.

Google Scholar

[53] P. Prasad: J. Mat. Scie. Lett. 12 (1993), p.902.

Google Scholar

[54] Th. Lampke, D. Dietrich, A. Leopold, G. Alisch and B. Wielage: Surface and Coating Technology (2008) accepted.

Google Scholar