Enhance the Performance of Free Space Optical (FSO) Communication due to Atmospheric Turbulence via the Dual Diffuser Modulation (DDM)

Article Preview

Abstract:

This paper focus on mitigating the atmospheric turbulence effect in free space optical communication using dual diffuser modulation (DDM) technique. Phase screen diffuser located on transmitter create 'new' beam wave to propagate through turbulence more efficiently. This technique uses two transmitter and differential mode detection at the receiver. The numerical result show that the DDM produce better performance compare to conventional FSO that using intensity modulation/direct detection (IM/DD) for On-Off Keying Modulation (OOK). The reduction in the scintillation level also improve in DDM compare to conventional technique that using a perfectly coherence beam.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

1027-1031

Citation:

Online since:

December 2013

Export:

Price:

[1] J. C. Ricklin and F. M. Davidson, Atmospheric turbulence effects on a partially coherent Gaussian Beam: implications for free-space laser communication, J. Opt. Soc. Am. A 19, 1794-1802 (2002).

DOI: 10.1364/josaa.19.001794

Google Scholar

[2] G. Gbur, E. Wolf Spreading of partially coherent beams in random media, (JOSA A, Vol. 19, 8, 2002).

Google Scholar

[3] Sidorovich et al. Mitigation of aberration in a beam-shaping telescope and optical inhomogeinity in a free-space optical path using an extended light source coupled to the telescope, Proc. SPIE Vol. 4635, 179-191 (2002).

DOI: 10.1117/12.464099

Google Scholar

[4] T. Shirai, A. Dogariu, E. Wolf, Directionality of some model beams propagating in atmospheric turbulence, (Optics Letters, submitted).

DOI: 10.1364/ol.28.000610

Google Scholar

[5] P. Raj, S. Sharma, P.C.S. Devara, Study of laser scintillation in different atmospheric conditions, . Journal of Applied Meteorology. Vol32. No 6, June (1993).

Google Scholar

[6] Jennifer C. Ricklin, Stephen M. Hammel, Frank D. Eaton, Atmospheric channel effectson free-space laser communication, SpringerScience (2007).

Google Scholar

[7] L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Bellingham, 2001).

Google Scholar

[8] O. Korotkova, L. C. Andrews, R. L. Phillips "Speckle propagation through atmosphere: effects of a random phase screen at the source, Proc. SPIE Vol. 4821 (2000).

Google Scholar

[9] Special Issue on laser speckle, Journal of the Optical Society of America, 1976; 66.

Google Scholar

[10] Dainty J. The statistics of Speckle Patterns, Progress in Optics, 1976; 14: 1-46.

Google Scholar

[11] Clifford S. The Classical theory of Wave Propagation in a Turbulent Medium. In: Strohbehn, J editor. Laser beam propagation in the Atmosphere. Heidelberg: Springer-Verlag; 1978. pp.9-43.

DOI: 10.1007/3540088121_16

Google Scholar

[12] Goodman J. Statistical Properties of Laser Speckle Patterns. In: Dainty, J.C., editor. Laser Speckle and Related Phenomena. Berlin: Springer-Verlag; 1984. pp.9-75.

DOI: 10.1007/bfb0111436

Google Scholar

[13] Chernov L. Wave Propagation in a Random Medium. New York(NY): McGraw-Hill; 1960. pp.59-124.

Google Scholar

[14] Goodman J. Statistical optics. New York(NY): Wiley; (1985).

Google Scholar

[15] Gustafson, E.K., Fejer, M.M., Byer, R.L.: Polarization-Based Balance Heterodyne Detection Method in A Sagnac Interferometer for Precision Phase Measurement. Optics Letters 22, 17 (1997).

DOI: 10.1364/ol.22.001359

Google Scholar

[16] Yamashita, S., Okoshi, T.: Suppression of Beat Noise from Optical Amplifiers Using Coherent Receivers. Journal of Lightwave Technology 12 (6), 1029–1035 (1994).

DOI: 10.1109/50.296195

Google Scholar