Elastic Properties of Thermo-Hydro-Mechanically Modified Bamboo (Guadua angustifolia Kunth) Measured in Tension

Article Preview

Abstract:

Guadua angustifolia Kunth (Guadua) was subjected to thermo-hydro-mechanical (THM) treatments that modified its microstructure and mechanical properties. THM treatment was applied to Guadua with the aim of tackling the difficulties in the fabrication of standardised construction materials and to gain a uniform fibre density profile that facilitates prediction of mechanical properties for structural design. Dry and water saturated Guadua samples were subjected to THM treatment. A densified homogenous flat sheet material was obtained. Mechanical properties of small clear specimens of THM modified Guadua were evaluated by testing in tension and compared to the results of the same test on a control specimen. Samples were tested in the elastic range to determine values for Modulus of Elasticity (MOE) and Poissons ratio. There was a significant increase in the tensile MOE values (parallel to the direction of the fibres) for densified samples. MOE values measured were 16.21 GPa, 22.80 GPa and 31.04 GPa for control, densified dry and densified water saturated samples respectively. Oven dry densities for these samples were 0.54 g/cm3, 0.81 g/cm3 and 0.83 g/cm3. Despite a 50 % reduction in the radial Poissons ratio for the water saturated sample, no further variation in the Poissons ratio as a result of densification was observed for control and densified dry samples. This paper presents the results of the first phase of a study focussed on the manufacturing of flat Guadua sheet (FGS) by THM treatment and the characterization of its mechanical properties. The achievement of a dimensionally stable FGS by THM modification, with a uniform density and achieved with reduced labour effort during manufacture, will be of key importance for the development of structural applications, and could have a significant impact in the bamboo industry. The final aim of the research at the University of Bath is the development of Cross Laminated Guadua (CLG) panels using THM modified and laminated FGS glued with a high performance resin.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-120

Citation:

Online since:

March 2014

Export:

Price:

* - Corresponding Author

[1] Ghavami, K. & Marinho A. B. Propriedades físicas e mecânicas do colmo inteiro do bambu da espécie Guadua angustifolia. (Physical and mechanical properties of the whole culm of bamboo of the Guadua angustifolia species). Revista Brasileira de Engenharia Agrícola e Ambiental, 9-1 (2005).

DOI: 10.1590/s1415-43662005000100016

Google Scholar

[2] Osorio-Saraz, J. A., Velez-Restrepo, J. M. & Ciro-Velasquez, H. J. Determinación de la relación de poisson de la Guadua angustifolia Kunth a partir de procesamientos de imágenes y su relación con la estructura interna. Rev. Fac. Nal. Agr. Medellín, 60-2 (2007).

DOI: 10.2307/j.ctvt6rn5t.4

Google Scholar

[3] Lugt, P. van der; Vogtländer, J.; Brezet, H. Bamboo, a sustainable solution for Western Europe-design cases, LCAs and land-use. INBAR Technical Report No. 30 (2009).

DOI: 10.1016/j.jclepro.2010.04.015

Google Scholar

[4] Nakajima, M., Furuta, Y. and Ishimaru, Y. Thermal-softening properties and cooling set of water-saturated bamboo within proportional limit. J Wood Sci. 54 (2008) 278–284.

DOI: 10.1007/s10086-008-0952-x

Google Scholar

[5] Tanaka, K., Ishitani, J. & Inoue, M. Improvement of strength performance for bamboo connector by densified technique. Journal of Structural and Construction Engineering (Transactions of AIJ) 73-632 (2008) 1805-1812.

DOI: 10.3130/aijs.73.1805

Google Scholar

[6] Ansell, M. P. Wood: A 45th anniversary review of JMS papers Part 2. Wood modification, fire resistance, carbonization, wood-cement and wood-polymer composites. Journal of Materials Science. 47-2 (2012) pp.583-598.

DOI: 10.1007/s10853-011-5995-5

Google Scholar

[7] Fang, Chang-Hua, Cloutier, A., Mariotti, N., Koubaa, A. & Blanchet P. Densification of Wood Veneers. Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe – Timber Committee October 11-14, 2010, Geneva, Switzerland Paper WS-19.

DOI: 10.15376/biores.6.1.373-385

Google Scholar

[8] Kutnar, A., Kamke, F. A. & Sernek, M. Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci Technol. 43 (2009) 57–68.

DOI: 10.1007/s00226-008-0198-1

Google Scholar

[9] Heger, F., Groux, M., Girardet, F., Welzbacher, C., Rapp, A. & Narvi, P. Mechanical and durability performance of THM-densified wood. Final Workshop COST Action E22 Environmental optimisation of wood protection, Lisboa-Portugal, 22nd March 2004. Available at: http: /www. bfafh. de/bibl/pdf/7thmproc. pdf.

Google Scholar

[10] Buschow, K.H.J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J. and Mahajan, S. Encyclopedia of Materials - Science and Technology, Volumes 1-11. Elsevier Press Ltd, Oxford, Major Reference Works, London, 2002 pp.9603-9751.

DOI: 10.1016/b0-08-043152-6/01865-9

Google Scholar

[11] Liese, W. The anatomy of bamboo culms. Technical Report No. 18, International Network for Bamboo and Rattan (INBAR) New Delhi, India, (1998).

Google Scholar

[12] Cherdchim, B., Matan, N. and Kyokong, B. Effect of temperature on thermal softening of black sweet-bamboo culms (Dendrocalamus asper Backer) in linseed oil. Songklanakarin J. Sci. Technol. 26-6 (2004) 855-866.

Google Scholar

[13] Kitazawa, K., Takahama, M. & Ogawa, H. Possibility of nosing of common Japanese bamboo. Journal of Materials Science 39 (2004) 1473-1476.

DOI: 10.1023/b:jmsc.0000013921.43208.ee

Google Scholar

[14] Amada, S. and Lakes, R. S., Viscoelastic properties of bamboo, Journal of Materials Science, 32 (1997) 2693-2697.

Google Scholar

[15] ISO-International Organization for Standardization, 2008. ISO 22157-1: 2004, Bamboo - Determination of physical and mechanical properties - Part 1: Requirements. Geneva, Switzerland.

Google Scholar

[16] ISO-International Organization for Standardization, 2009. ISO/TR 22157-2: 2004, Bamboo -Determination of physical and mechanical properties - Part 2: Laboratory manual. Geneva, Switzerland.

Google Scholar

[17] NTC-Norma Técnica Colombiana, NTC 5525-2007. Métodos de ensayo para determinar las propiedades físicas y mecánicas de la Guadua angustifolia Kunth. Instituto Colombiano de Normas Técnicas –ICONTEC- (2007).

DOI: 10.15332/s2145-1389.2018.0001.05

Google Scholar

[18] BSI-British Standard Institution, 1957. BS 373: 1957, Methods of testing small clear specimens of timber. London, UK. Available at: http: /www. bsigroup. com.

Google Scholar

[19] BSI-British Standard Institution, 2010. BS EN 408: 2010+A1: 2012, Timber structures. Structural timber and glued laminated timber. Determination of some physical and mechanical properties. London, UK. Available at: http: /www. bsigroup. com.

DOI: 10.3403/30159970

Google Scholar

[20] BSI-British Standard Institution, 2004. BS EN 789: 2004 Timber structures. Test methods. Determination of mechanical properties of wood based panels. London, UK. Available at: http: /www. bsigroup. com.

Google Scholar

[21] Bodig, J. & Jayne, B. Mechanics of wood and wood composites, 2nd edition, Krieger Publishing Company, Florida, (1993).

Google Scholar

[22] Wegst, U. G. K. Bending efficiency through property gradients in bamboo, palm, and wood-based composites. Journal of the Mechanical Behaviour of Biomedical Materials, 4-5 (2011) 744-755.

DOI: 10.1016/j.jmbbm.2011.02.013

Google Scholar

[23] Correal D, J.F. & Arbeláez C, J. Influence of Age and Height Position on Colombian Guadua Angustifolia Bamboo Mechanical Properties. Maderas, Ciencia y Tecnología, 12-2 (2010) 105-113.

DOI: 10.4067/s0718-221x2010000200005

Google Scholar

[24] Takeuchi, C., Rivera, J.F. & Rusinque, M. Structural behaviour of braced Guadua frames. In Proceedings of the 11th International Conference on Non-conventional Materials and Technologies (NOCMAT). Bath, UK (2009).

Google Scholar

[25] Moreno-M., L.E., Osorio-Serna, L.R. & Trujillo De Los Ríos, E.E. Estudio de las propiedades mecánicas de haces de fibra de Guadua angustifolia. Ingeniería y desarrollo, 20 (Julio-Diciembre 2006) 125-133.

DOI: 10.25100/iyc.v24i1.10633

Google Scholar

[26] Ghavami, K., Rodrigues, C.S. & Paciornik, S. Bamboo: Functionally graded composite material. Asian Journal of Civil Engineering and Housing, 4-1 (2003) 1-10.

Google Scholar

[27] 2011, Li, H. & Shen, S. The mechanical properties of bamboo and vascular bundles. Journal of Materials Research. 26-21 (2011) 2749-2756.

DOI: 10.1557/jmr.2011.314

Google Scholar

[28] Obataya, E., Kitin, P. & Yamauchi, H. Bending characteristics of bamboo (Phyllostachys pubescens) with respect of its fibre-foam composite structure. Wood Sci Technol 41 (2007) 385-400.

DOI: 10.1007/s00226-007-0127-8

Google Scholar

[29] Archila-Santos, H., Ansell M., Walker, P. Low Carbon Construction Using Guadua Bamboo in Colombia).  Key Engineering Materials. 517 (2012) 127-134.

DOI: 10.4028/www.scientific.net/kem.517.127

Google Scholar

[30] Ansell, M. P. Wood-a 45th anniversary review of JMS papers. Part 1: The wood cell wall and mechanical properties. Journal of Materials Science. 46-23 (2011) 7357-7368.

DOI: 10.1007/s10853-011-5856-2

Google Scholar