Effect of Sisal Fiber Hornification on the Fiber-Matrix Bonding Characteristics and Bending Behavior of Cement Based Composites

Article Preview

Abstract:

Cycles of wetting and drying can change the microstructure of vegetable fibers through a mechanism known as hornification, which modifies the polymeric structure of the fiber-cells resulting in a higher dimensional stability. In the present work the influence of hornification on the sisal fiber-matrix bond adhesion as well as in the sisal fiber dimensional stability and mechanical behaviour under direct tension was evaluated. Furthermore, cementitious composites reinforced with randomly dispersed hornified sisal fibers were developed and characterized under bending loads. The results show that the tensile strength and strain at failure of the hornified sisal fibers were increased by about 5% and 39%, respectively, whereas the modulus of elasticity was reduced by 9%. The fibers also presented higher dimensional stability with the hornification process. The fiber-matrix bonding was improved and the pull-out resistance of the fibers submitted to ten cycles of wetting and drying was increased by about 40% to 50%. The higher fiber-matrix bond strength contributed to an increase in the ductility and post-cracking behaviour of the composite. The fracture process was characterized by the formation of multiple cracks with the hornified sisal fibers presenting a higher ability to bridge and arrest the cracks.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

421-432

Citation:

Online since:

March 2014

Export:

Price:

[1] MELO FILHO, J.A., Desenvolvimento e Caracterização de Laminados Cimentíceos Reforçados com Fibras Longas de Sisal,. Tese de D. Sc. em Engenharia Civil, COPPE/UFRJ, Rio de Janeiro, Brasil, (2012).

DOI: 10.1590/s1415-43662007000600014

Google Scholar

[2] RAMÍREZ, M.G.L., MUNIZ, G.I.B., SATYANARAYANA, K.G., TANOBE, V., IWAKIRI, S. Preparation and characterization of biodegradable composites based on Brazilian cassava starch, corn starch and green coconut fibers,. Revista Matéria, v. 15, n. 2, p.370 – 377, (2010).

DOI: 10.1590/s1517-70762010000200034

Google Scholar

[3] TOLEDO FILHO, R. D. ; SCRIVENER, S.; ENGLAND, G. L.; GHAVAMI, K . Durability of alkali-sensitive sisal and conconut fibres in cement mortar composites,. Cement & Concrete Composites v. 22. 127-143, (2000).

DOI: 10.1016/s0958-9465(99)00039-6

Google Scholar

[4] SILVA, F. A., CHAWLA, N., TOLEDO FILHO, R.D. Mechanical Behavior of Natural Sisal Fibers, Journal of Biobased Materials and Bioenergy, v. 4, n. 2, pp.106-113, (2010).

DOI: 10.1166/jbmb.2010.1074

Google Scholar

[5] INACIO, W.P., LOPES, F.P.D., MONTEIRO, S.N. Diameter dependence of tensile strength by Weibull analysis: Part III sisal fiber,. Revista Matéria, v. 15, n. 2, pp.176-182, (2010).

DOI: 10.1590/s1517-70762010000200006

Google Scholar

[6] SILVA, F.A., MOBASHER, B. SORANAKOM, C., TOLEDO FILHO, R.D. Effect of fiber shape and morphology on interfacial bond and cracking behaviors of sisal fiber cement based composites, Cement and Concrete Composites, v. 33, pp.814-823, (2011).

DOI: 10.1016/j.cemconcomp.2011.05.003

Google Scholar

[7] TOLÊDO FILHO, R. D., Materiais compósitos reforçados com fibras naturais: caracterização experimental. Tese de D. Sc. em Engenharia Civil, DEC/PUC-Rio, Rio de Janeiro, Brasil, (1997).

DOI: 10.17771/pucrio.acad.2144

Google Scholar

[8] TOLEDO FILHO, R.D., SILVA, F.A., FAIRBAIRN, E.M.R., MELO FILHO, J.A. Durability of compression molded sisal fiber reinforced mortar laminates, Construction & Building Materials, v. 23, pp.2409-2420, (2009).

DOI: 10.1016/j.conbuildmat.2008.10.012

Google Scholar

[9] Li, Y.; HU, C.; YU, Y. Interfacial studies of sisal fiber reinforced high density polyethylene (HDPE) composites,. Composites Part A: Applied Science and Manufacturing, v. 39, n. 4, pp.570-578, (2008).

DOI: 10.1016/j.compositesa.2007.07.005

Google Scholar

[10] ANGRIZANI, C. A. B.; VIEIRA, A. J.; ZATTERA, E.; FREIRE, R. M. C.; SANTANA, S. C; AMICO. Influência do comprimento da fibra de sisal e do seu tratamento químico nas propriedades de compósitos com poliéster, CBECIMat, Congresso Brasileiro de Engenharia e Ciência dos Materiais, , Foz do Iguaçu, PR, Brasil, (2006).

DOI: 10.20906/cps/cb-07-0050

Google Scholar

[11] CLARAMUNT, J., ARDANUY, M., GARCIA-HORTAL, J.A., Effect of drying and rewetting cycles on the structure and physicochemical characteristics of softwood fibres for reinforcement of cementitious composites, Carbohydrate Polymers, v. 79, pp.200-205, (2010).

DOI: 10.1016/j.carbpol.2009.07.057

Google Scholar

[12] LOPES, F.F. M, ARAUJO, G. T, NASCIMENTO, J.W. B, GADELHA, T. S, SILVA, V.R. Estudo dos efeitos da acetilação em fibras de sisal, Revista Brasileira de Engenharia Agrícola e Ambiental, v. 14, n. 7, pp.783-788, (2010).

DOI: 10.1590/s1415-43662010000700015

Google Scholar

[13] SELVAM, P. V. P.; SANTIAGO, B. H. Tratamento superficial da fibra do coco: estudo de caso baseado numa alternativa econômica para fabricação de materiais compósitos, Revista Analytica, n. 26, pp.783-788, (2007).

Google Scholar

[14] MONTEIRO, S.N., D'ALMEIDA, J.R.M., Ensaios de Pullout em Fibras Lignocelulósicas –Uma Metodologia de Análise,. Revista Matéria, v. 11, n. 3, p.189–196, (2006).

DOI: 10.1590/s1517-70762006000300004

Google Scholar

[15] LIMA, P.R.L.; TOLEDO FILHO, R.D. Uso de metacaulinita para incremento da durabilidade de compósitos à base de cimento reforçados com fibras de sisal,. Ambiente Construído, v. 8, n. 4, pp.7-19, (2008).

DOI: 10.11606/d.3.2010.tde-30122014-162204

Google Scholar

[16] FERREIRA, S. Influência da hornificação na aderência fibra-matriz e no comportamento mecânico de compósitos cimentícios reforçados com fibras curtas de sisal,. Tese de M. Sc. em Engenharia Civil e Ambiental, UEFS, Feira de Santana, Brasil, (2012).

DOI: 10.17771/pucrio.acad.59447

Google Scholar

[17] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13276: argamassa para assentamento e revestimento de paredes e tetos: preparo da mistura e determinação do índice de consistência. Rio de Janeiro, 2005. 3p.

DOI: 10.1590/s1517-707620210003.13039

Google Scholar

[18] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7215: cimento Portland: determinação da resistência à compressão, 1996. 8p.

Google Scholar

[19] KIM, J.T. NETRAVALI, A.N. Mercerization of sisal fibers: Effect of tension on mechanical propertiesof sisal fiber and fiber-reinforced composites. Composites: Part A, v. 41, p.1245–1252, (2010).

DOI: 10.1016/j.compositesa.2010.05.007

Google Scholar

[20] BRANCATO, A. A. Effect of progressive recycling on cellulose fiber surface properties,. Thesis of D. Sc, - School of Chemical and Biomolecular Engineering, Georgia Institute of Technology December, (2008).

Google Scholar

[21] Diniz, J.M.B. F., Gil, M.H., CASTRO, J.A.A.M. Hornification—its origin and interpretation in wood pulps,. Wood Sci Technol 37 (2004) 489–494.

DOI: 10.1007/s00226-003-0216-2

Google Scholar

[22] LI, Y., MAI, Y-W, YE, L. Sisal fibre and its composites: a review of recent developments., Composites Science and Technology, v. 60, pp.2037-2055, (2000).

DOI: 10.1016/s0266-3538(00)00101-9

Google Scholar

[23] SAVASTANO JR, H., AGOPYAN, V. Transition zone studies of vegetable fibre-cement paste composites,. Cement and Concrete Composites, v. 21, pp.49-57, (1999).

DOI: 10.1016/s0958-9465(98)00038-9

Google Scholar