Microbial Bioconversion Process of Glucose for the Production of Xylitol

Article Preview

Abstract:

Xylitol is the first rare sugar that has global market because of its excellent properties. Considering its superiority to chemosynthesis, biosynthesis of xylitol became hot issue in recent studies. The production of xylitol from glucose experienced a development from three-step process to two-step process, or even only one-step process. The microbial and enzymatic process involving key enzymes, molecular cloning and expression and transgenic bacteria construction is introduced in this paper. This study may provide novel thought to explore new resource for better control of biological reaction conditions and obtainment of higher xylitol yield.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-152

Citation:

Online since:

December 2014

Export:

Price:

* - Corresponding Author

[1] H. Cheng, J. Lv, H. Wang, B. Wang, Z. Li, Z. Deng, Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process, Appl. Microbiol. Biot. 98 (2014) 3539-3552.

DOI: 10.1007/s00253-013-5501-x

Google Scholar

[2] M. Miura, I. Watanabe, Y. Shimotori, M. Aoyama, Y. Kojima, Y. Kato, Microbial conversion of bamboo hemicellulose hydrolysate to xylitol, Wood Sci. Technol. 47 (2013) 515-522.

DOI: 10.1007/s00226-012-0501-z

Google Scholar

[3] X. Guo, R. Zhang, Z. Li, X. Zhou, A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan, Bioresource Technol. 128 (2013) 547-552.

DOI: 10.1016/j.biortech.2012.10.155

Google Scholar

[4] H. Cheng, N. Jiang, A. Shen, Y. Feng, Molecular cloning and functional expression of d-arabitol dehydrogenase gene from Gluconobacter oxydans in Escherichia coli, Fems Microbiol. Lett. 252 (2005) 35-42.

DOI: 10.1016/j.femsle.2005.08.023

Google Scholar

[5] H. Cheng, Z. Li, N. Jiang, Z. Deng, Cloning, Purification and Characterization of an NAD-Dependent d-Arabitol Dehydrogenase from Acetic Acid Bacterium, Acetobacter suboxydans, Protein J. 28 (2009) 263-272.

DOI: 10.1007/s10930-009-9191-2

Google Scholar

[6] S. Hong, J. Wu, H. Zhao, Cloning, overexpression, purification, and site-directed mutagenesis of xylitol-2-dehydrogenase from Candida albicans, J. Mol. Catal. B-Enzym. 62 (2010) 42-45.

DOI: 10.1016/j.molcatb.2009.08.013

Google Scholar

[7] D. Biswas, M. Datt, A. Mondal, Molecular cloning, characterization, and engineering of xylitol dehydrogenase from Debaryomyces hansenii, Appl. Microbiol. Biot. 97 (2013) 1613-1623.

DOI: 10.1007/s00253-012-4020-5

Google Scholar

[8] P. Zhou, S. Li, H. Xu, X. Feng, P. Ouyang, Construction and co-expression of plasmid encoding xylitol dehydrogenase and a cofactor regeneration enzyme for the production of xylitol from D-arabitol, Enzyme Microb. Tech. 51 (2012) 119-124.

DOI: 10.1016/j.enzmictec.2012.05.002

Google Scholar

[9] J. Zhang, S. Li, H. Xu, P. Zhou, L. Zhang, P. Ouyang, Purification of xylitol dehydrogenase and improved production of xylitol by increasing XDH activity and NADH supply in Gluconobacter oxydans, J. Agr. Food Chem. 61 (2013) 2861-2867.

DOI: 10.1021/jf304983d

Google Scholar

[10] M.H. Tolvari, L. Ruohonen, A.N. Miasnikov, P. Richard, M. Penttila, Metabolic engineering of Saccharomyces cerevisiae for conversion of D-glucose to xylitol and other five-carbon sugars and sugar alcohols, Appl. Environ. Microb. 73 (2007).

DOI: 10.1128/aem.02707-06

Google Scholar

[11] M. Povelainen, A.N. Miasnikov, Production of xylitol by metabolically engineered strains of Bacillus subtilis, J. Biotechnol. 128 (2007) 24-31.

DOI: 10.1016/j.jbiotec.2006.09.008

Google Scholar

[12] B. Gasser, R. Prielhofer, H. Marx, M. Maurer, J. Nocon, M. Steiger,V. Puxbaum, M. Sauer, D. Mattanovich, Pichia pastoris: protein production host and model organism for biomedical research, Future Microbiol. 8 (2013) 191-208.

DOI: 10.2217/fmb.12.133

Google Scholar

[13] S. Heiss, M. Maurer, R. Hahn, D. Mattanovich, Brigitte Gasser, Identification and deletion of the major secreted protein of Pichia pastoris, Appl. Microbiol. Biot. 97 (2013) 1241-1249.

DOI: 10.1007/s00253-012-4260-4

Google Scholar