Formability Enhancement in Incremental Forming for an Automotive Aluminium Alloy Using Laser Assisted Incremental Forming

Article Preview

Abstract:

The aim of this study is to establish general guidelines for minimizing the number of tests required to determine optimum process parameters in terms of formability for laser assisted single point incremental forming (LASPIF). An automotive aluminium alloy (AA5182-O) is selected and the room temperature failure angle of this material is determined experimentally. The straining behaviour as well as sheet thinning of the test part (at its maximum forming angle) is studied using an experimentally validated finite element model. From the thinning rate of the sheet metal and the shape of the contact zone between tool and sheet it is concluded that continuous straining of the sheet on the wall region of the contact area is responsible for extra thinning and failure. Based on the size and position of the contact zone, different laser tool positioning strategies have been used to achieve the highest forming angle. It is concluded that due to an elongated shape of the contact zone in steep wall angle parts and considering a small deviation of the forming robot, the selection of a large spot diameter is necessary in terms of maximum obtainable wall angle. It has been observed that the maximum forming angle is still achievable using a large forward offset. It is concluded that the partial stress-relief annealing of the deformed geometry during the approach of the forming tool, is responsible for this formability enhancement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-202

Citation:

Online since:

March 2015

Export:

Price:

* - Corresponding Author

[1] S. Toros, F. Ozturk, I. Kacar, Review of Warm Forming of Aluminum–Magnesium Alloys, J. Mater. Process. Tech. 207 (2008), 1-12.

DOI: 10.1016/j.jmatprotec.2008.03.057

Google Scholar

[2] K. Takata, Warm Forming of Aluminum Alloys, Nippon Steel Technical Report No. 103, UDC 669. 715 721: 621. 984 (2013), 104-09.

Google Scholar

[3] J. Li, S. Kim, T.M. Lee, P. Krajewski, H. Wang, S. Jack Hu, The Effect of Prestrain and Subsequent Annealing on the Mechanical Behavior of AA5182-O, M. Sci. and Eng: A. 528 (2011), 3905-14.

DOI: 10.1016/j.msea.2010.12.014

Google Scholar

[4] D. Schmoeckel, B.C. Liebler, F.D. Speck, Grundlagen Und Modellversuche-Temperaturgefu Hrterstofffluß Beim Tiefziehen Von Al-Blech-Realversuche, Bander Bleche Rohre, 36 (1995), 14–21.

Google Scholar

[5] T. Naka, R. Hino, F. Yoshida, Effects of Temperature and Forming Speed on Deep Drawability of 5083 Aluminium Alloy Sheet, J. Japan Soc. for Tech. of Plast. 43 (497) (2002), 551-56.

DOI: 10.1007/bf03187810

Google Scholar

[6] R. C. Picu, G. Vincze, F. Ozturk, J. J. Gracio, F. Barlat, A. M. Maniatty, Strain Rate Sensitivity of the Commercial Aluminum Alloy AA5182-O, M. Sci. and Eng: A. 390 (2005), 334-43.

DOI: 10.1016/j.msea.2004.08.029

Google Scholar

[7] J. R. Duflou, B. Callebaut, J. Verbert, H. De Baerdemaeker, Laser Assisted Incremental Forming: Formability and Accuracy Improvement, CIRP Annals - Manufacturing Technology. 56 (2007), 273-76.

DOI: 10.1016/j.cirp.2007.05.063

Google Scholar

[8] J. R. Duflou, B. Callebaut, J. Verbert, H. De Baerdemaeker, Improved Spif Performance through Dynamic Local Heating, Int. J. Mach. Tool and Manuf. 48 (2008), 543-49.

DOI: 10.1016/j.ijmachtools.2007.08.010

Google Scholar

[9] J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, J. Allwood, Asymmetric Single Point Incremental Forming of Sheet Metal, CIRP Annals - Manufacturing Technology. 54 (2005), 88-114.

DOI: 10.1016/s0007-8506(07)60021-3

Google Scholar

[10] A. Mohammadi, H. Vanhove, A. Van Bael, J. Duflou, On the Geometric Accuracy in Shallow Sloped Parts in Single Point Incremental Forming, Key. Eng. Mater. 554-557 (2013), 1143.

DOI: 10.4028/www.scientific.net/kem.554-557.1443

Google Scholar

[11] R. Brun, Chambard A, Lai M, Luca Pd (1999) Actual and Virtual Testing Techniques for a Numerical Definition of Materials. Paper presented at the NUMISHEET 99, Besanc¸on, France.

Google Scholar

[12] H. Mamusi, A. Masoumi, R. Hashemi, R. Mahdavinejad, A Novel Approach to the Determination of Forming Limit Diagrams for Tailor-Welded Blanks, J. Mater. Eng. and Perform. 22 (2013), 3210-21.

DOI: 10.1007/s11665-013-0625-9

Google Scholar

[13] T. Pepelnjak, K. Kuzman, Numerical Determination of the Forming Limit Diagrams, J. Achiev. Mater. Manuf. 20 (2007), 375-78.

Google Scholar

[14] P. Eyckens, A. Van Bael, R. Aerens, J. Duflou, P. Van Houtte, Small-Scale Finite Element Modelling of the Plastic Deformation Zone in the Incremental Forming Process, Int. J. of Mat. Form. 1 (2008), 1159-62.

DOI: 10.1007/s12289-008-0186-x

Google Scholar

[15] N. Abedrabbo, F. Pourboghrat, J. Carsley, Forming of AA5182-O and AA5754-O at Elevated Temperatures Using Coupled Thermo-Mechanical Finite Element Models, Int. J. of Plast. 23 (2007), 841-75.

DOI: 10.1016/j.ijplas.2006.10.005

Google Scholar

[16] A. Mohammadi, H. Vanhove, A. Van Bael, J. Duflou, The Effect of Laser Radiation on the Residual Stress Levels of Single Point Incrementally Formed (Spif) Parts , in 4th International Workshop on Thermal Forming and Welding Distortion (IWOTE).

DOI: 10.1007/s12289-014-1203-x

Google Scholar

[17] M. Merklein, M. Lechner, T. Schneider, R. Plettke, Tailored Heat Treated Profiles - Enhancement of the Forming Limit of Aluminum Profiles under Bending Load, Key. Eng. Mater. 504-506 (2012), 375-80.

DOI: 10.4028/www.scientific.net/kem.504-506.375

Google Scholar

[18] T. Kleeh, M. Merklein, K. Roll, Modeling Laser Heating for Roller Hemming Applications, Key. Eng. Mater. 473 (2011), 501-08.

DOI: 10.4028/www.scientific.net/kem.473.501

Google Scholar