Investigation of the Suitability of Surface Treatments for Dry Cold Extrusion by Process-Oriented Tribological Testing

Article Preview

Abstract:

In cold extrusion of aluminum alloys adhesive wear can be prevented by an excessive lubrication of the process. While this causes additional process steps also environmental risks have to be addressed. Hence, dry metal forming, i.e. avoiding lubrication by means of coatings and topography modifications is highly desirable. In this paper first results concerning the behavior of tailored surfaces under dry metal forming conditions for pure aluminum are presented. Different surface treatments (laser polishing and Mo2BC coating) of the tool steel AISI H11 are tested in a compression-torsion-tribometer under conditions adapted from cold extrusion. Normal stresses six times higher than the initial yield stress of the tested workpiece material pure aluminum (AA1050-O) are applied. Furthermore, a strategy for the characterization of aluminum adhesions to the tool is introduced. The influences of different topographies and the presence of a coating on the loss of material due to adhesive wear are investigated.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

473-479

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] M. Geiger, T. Herlan, Fließpressen, in: G. Spur, H. Hoffmann, R. Neugebauer (Eds. ), Handbuch Umformen: Handbuch der Fertigungstechnik, Hanser Verlag, München, 2012, 318-387.

Google Scholar

[2] N. Bay, The state of the art in cold forging lubrication, Journal of Materials Processing Technology 46 (1994) 19-40.

DOI: 10.1016/0924-0136(94)90100-7

Google Scholar

[3] F. Vollertsen, F. Schmidt, Dry Metal Forming: Definition, Chances and Challenges, Int. Journal of Precision Engineering and Manufacturing-Green Technology 1 (2014) 59-62.

DOI: 10.1007/s40684-014-0009-0

Google Scholar

[4] M. Teller, S. Seuren, M. Bambach, G. Hirt, A new compression-torsion-tribometer with scalable contact pressure for characterization of tool wear during plastic deformation, Conference papers in Science, Article ID 496515 (2014).

DOI: 10.1155/2015/496515

Google Scholar

[5] A. Temmler, Selektives Laserpolieren von Design Oberflächen, PhD-Thesis, RWTH Aachen University, Shaker, (2013).

Google Scholar

[6] C. Liebing, Beeinflussung funktioneller Oberflächeneigenschaften von Stahlwerkstoffen durch Laserpolieren, PhD-Thesis, RWTH Aachen University, Shaker, (2010).

Google Scholar

[7] E. Willenborg, Laserpolieren von Werkzeugstählen, PhD-Thesis, RWTH Aachen University, Shaker, (2006).

Google Scholar

[8] F. Clarysse, W. Lauwerens, M. Vermeulen, Wear 264, 400 (2008).

Google Scholar

[9] F. Rovere, D. Music, S. Ershov, M. t. Baben, H. -G. Fuss, P. H. Mayrhofer, J. M. Schneider, Journal of Physics D-Applied Physics 43 (2010).

Google Scholar

[10] F. Rovere, D. Music, J. M. Schneider, P. H. Mayrhofer, Acta Materialia 58, 2708 (2010).

Google Scholar

[11] W. Tillmann,  E. Vogli,  J. Herper,  M. Haase,  Coatings  in Manufacturing  Engineering  438,  41  (2010).

Google Scholar

[12] J. Emmerlich, D. Music, M. Braun, P. Fayek, F. Munnik, J. M. Schneider, Journal of Physics D-Applied Physics 42 (2009).

Google Scholar

[13] H. Bolvardi, J. Emmerlich, M. to Baben, D. Music, J. von Appen, R. Dronskowski, J. M. Schneider, Journal of Physics-Condensed Matter 25 (2013).

DOI: 10.1088/0953-8984/25/4/045501

Google Scholar

[14] H. Bolvardi, J. Emmerlich, S. Mraz, M. Arndt, H. Rudigier, J. M. Schneider, Thin Solid Films 542, 5 (2013).

DOI: 10.1016/j.tsf.2013.07.021

Google Scholar