Small Punch Testing of Sanicro 25 Steel and its Correlation with Uniaxial Tests

Article Preview

Abstract:

Small punch testing under constant deflection rate, constant force and constant deflection (i.e. force relaxation) were performed on the new austenitic steel Sanicro 25. Constant deflection rate experiments were correlated to uniaxial tensile tests at room temperature and 700°C with the help of several empirical relationships. Small punch creep testing was performed in as received state. Correlation of the small punch results with uniaxial creep test results was done and the force/stress ratio Ψ and kSP parameter were determined. The constant deflection small punch test was correlated with the uniaxial stress relaxation test and good agreement was reached.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-76

Citation:

Online since:

April 2017

Export:

Price:

* - Corresponding Author

[1] Small Punch Test Method for Metallic Materials, CWA 15627. Part A: A Code of Practice for Small Punch Creep Testing and Part B: A Code of Practice for Small Punch Testing for Tensile and Fracture Behaviour, Documents of CEN WS21, Brussels, (2007).

DOI: 10.1520/e3205

Google Scholar

[2] G. Chai., M. Boström, M. Olaison, U. Forsberg, Creep and LCF behaviors of newly developed advanced heat resistant austenitic stainless steel for A-USC, Procedia Eng. 55 (2013) 232-239.

DOI: 10.1016/j.proeng.2013.03.248

Google Scholar

[3] J. Polák, R. Petráš, M. Heczko, I. Kuběna, T. Kruml, G. Chai, Low cycle fatigue behavior of Sanicro 25 steel at room and at elevated temperature, Mater. Sci. Eng. A 615 (2014) 175-182.

DOI: 10.1016/j.msea.2014.07.075

Google Scholar

[4] B. Rutkowski, A. Gil, A. Czyrska-Filemonowicz, Microstructure and chemical composition of the oxide scale formed on the Sanicro 25 steel tubes after fireside corrosion, Corros. Sci. 102 (2016) 373–383.

DOI: 10.1016/j.corsci.2015.10.030

Google Scholar

[5] J. Polák, R. Petráš, M. Heczko, T. Kruml, G. Chai, Analysis of cyclic plastic response of heat resistant Sanicro 25 steel at ambient and elevated temperatures, Procedia Eng. 74 ( 2014 ) 68-73.

DOI: 10.1016/j.proeng.2014.06.226

Google Scholar

[6] X. Mao, H. Takahashi, Development of a further-miniaturized specimen of 3 mm diameter for TEM disk (Ø 3 mm) small punch tests. J. Nucl. Mater. 150, (1987) 42-52.

DOI: 10.1016/0022-3115(87)90092-4

Google Scholar

[7] K. Guan, Z. Wang: SPT code of tensile test. p.29 In: Materiálový a metalurgický výzkum s. r. o. 2010 presentation available at: http: /www. mmvyzkum. cz/Obr/10_Development%20of%20Small... pdf.

Google Scholar

[8] T.E. García C. Rodríguez, F.J. Belzunce: Small punch test to estimate the mechanical properties of structural steels. Applied mechanics 2012. Plzen 16-18. 4. (2012).

Google Scholar

[9] M. Song, K. Guan, W. Qin, J.A. Szpunar, Comparison of mechanical properties in conventional and small punch tests of fractured anisotropic A350 alloy forging flange, Nucl. Eng. Des. 247 (2012) 58-65.

DOI: 10.1016/j.nucengdes.2012.03.023

Google Scholar

[10] J. Purmenský, K. Matocha: Zkoušení malých vzorků ve fyzikální metalurgii. In: Metal 2001 10th International Metallurgical and Materials Conference 15. -17. 5. 2001, Ostrava, Czech Republic pp.1-13.

Google Scholar

[11] R. Hurst, K. Matocha, Experiences with the European Code of Practice for Small Punch Testing for Creep, Tensile and Fracture Behaviour, Conference Proceedings SSTT 2014, p.1–26.

Google Scholar

[12] T.E. García, C. Rodríguez, F.J. Belzunce, C. Suárez, Estimation of the mechanical properties of metallic materials by means of the small punch test, J. Alloy. Compd. 582 (2014) 708-717.

DOI: 10.1016/j.jallcom.2013.08.009

Google Scholar

[13] P. Dymáček, K. Milička, Small punch testing and its numerical simulations under constant deflection force conditions, Strength Mater. 40 (2008) 24-27.

DOI: 10.1007/s11223-008-0007-y

Google Scholar

[14] K. Milička, F. Dobeš, Small punch testing of P91 steel, Int. J. Pres. Ves. Pip. 83 (2006) 625-634.

DOI: 10.1016/j.ijpvp.2006.07.009

Google Scholar

[15] P. Dymáček, S. Seitl, K. Milička, F. Dobeš: Influence of friction on stress and strain distributions in small punch creep test models, Key Eng. Mater. 417-418 (2010) 561-564.

DOI: 10.4028/www.scientific.net/kem.417-418.561

Google Scholar