Influence of Metakaolin, Fly Ash and Nano Silica on Mechanical and Durability Properties of Concrete

Article Preview

Abstract:

Concrete is widely used construction material for the development of built environment which consumes huge amount of cement, around 4.3 billion metric ton all over the world. Reinforced concrete construction exposed to harsh environment such as chloride bound air causes deterioration in concrete through its pore structure by corroding the steel bar. The use of pozzolanic material i.e. metakaolin (MK), fly ash (FA), silica fume (SF), nano silica (NS) can be used as partially cement replacing material which not only reduces the pores in concrete but improves the mechanical, durability properties and microstructure of concrete. This paper reviews various transport mechanisms involved in ingress of deleterious material and incorporation of MK, FA and NS in concrete and their effects on concrete mechanical and durability properties. However, the research work provides an extended approach to evaluate combine effect using MK, FA, and NS and to produce a concrete with more refined pore structure for aggressive environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-14

Citation:

Online since:

July 2017

Export:

Price:

* - Corresponding Author

[1] N. Shafiq, F. Nuruddin, Chloride ion migration in concrete using electrical method by applying current at different voltages, International Conference on Sustainable Building and Infrastructure (ICSBI 2010), (2010), pp.15-17.

Google Scholar

[2] T. Ayub, N. Shafiq, S. U. Khan, M. Nuruddin, Durability of concrete with different mineral admixtures: A review, Int. J. Civil. Struct. Constr. Archit. Eng. 7 (2013) 265-276.

Google Scholar

[3] B. Birgisson, A. K. Mukhopadhyay, G. Geary, M. Khan, K. Sobolev, Nanotechnology in Concrete Materials: A Synopsis, Transportation Research E-Circular, (2012).

DOI: 10.17226/22672

Google Scholar

[4] K. Stanish, R. Hooton, M. Thomas, Testing the chloride penetration resistance of concrete: a literature review, FHWA contract DTFH61, (1997), pp.19-22.

Google Scholar

[5] L. Basheer, J. Kropp, D. J. Cleland, Assessment of the durability of concrete from its permeation properties: a review, Constr. Build. Mater. 15 (2001) 93-103.

DOI: 10.1016/s0950-0618(00)00058-1

Google Scholar

[6] J. Han, Chloride transport in concrete, (1996).

Google Scholar

[7] K. Ann, J. Ahn, J. Ryou, The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures, Constr. Build. Mater. 23 (2009) 239-245.

DOI: 10.1016/j.conbuildmat.2007.12.014

Google Scholar

[8] H. W. Song, C. H. Lee, K. Y. Ann, Factors influencing chloride transport in concrete structures exposed to marine environments, Cem. Concr. Comp. 30 (2008) 113-121.

DOI: 10.1016/j.cemconcomp.2007.09.005

Google Scholar

[9] T. Ji, Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO 2, Cem. Concr. Res. 35 (2005) 1943-(1947).

DOI: 10.1016/j.cemconres.2005.07.004

Google Scholar

[10] K. Sobolev, I. Flores, L. Torres-Martinez, P. Valdez, E. Zarazua, E. Cuellar, Engineering of SiO2 nanoparticles for optimal performance in nano cement-based materials, Nanotechnology in construction 3, ed: Springer, (2009), pp.139-148.

DOI: 10.1007/978-3-642-00980-8_18

Google Scholar

[11] H. Du, S. Du, X. Liu, Durability performances of concrete with nano-silica, Constr. Build. Mater. 73 (2014) 705-712.

DOI: 10.1016/j.conbuildmat.2014.10.014

Google Scholar

[12] H. Li, H. G. Xiao, J. Yuan, J. Ou, Microstructure of cement mortar with nano-particles, Comp. Part B: Eng. 35 (2004) 185-189.

DOI: 10.1016/s1359-8368(03)00052-0

Google Scholar

[13] A. Nazari, S. Riahi, The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete, Comp. Part B: Eng. 42 (2011) 570-578.

DOI: 10.1016/j.compositesb.2010.09.025

Google Scholar

[14] M. Jalal, A. R. Pouladkhan, H. Norouzi, G. Choubdar, Chloride penetration, water absorption and electrical resistivity of high performance concrete containing nano silica and silica fume, J. Am. Sci. 8 (2012).

Google Scholar

[15] C. S. Poon, S. Kou, L. Lam, Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete, Constr. Build. Mater. 20 (2006) 858-865.

DOI: 10.1016/j.conbuildmat.2005.07.001

Google Scholar

[16] P. Duan, Z. Shui, W. Chen, C. Shen, Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete, Constr. Build. Mater. 44 (2013) 1-6.

DOI: 10.1016/j.conbuildmat.2013.02.075

Google Scholar

[17] X. Jin, Z. Li, Effects of mineral admixture on properties of young concrete, J. Mater. Civil Eng. 15 (2003) 435-442.

DOI: 10.1061/(asce)0899-1561(2003)15:5(435)

Google Scholar

[18] M. Si-Ahmed, A. Belakrouf, S. Kenai, Influence of Metakaolin on the Performance of Mortars and Concretes, in Proceedings of World Academy of Science, Engineering and Technology, (2012), p.1354.

Google Scholar

[19] P. Dinakar, P. K. Sahoo, G. Sriram, Effect of metakaolin content on the properties of high strength concrete, Int. J. Concr. Struct. Mater. 7 (2013) 215-223.

DOI: 10.1007/s40069-013-0045-0

Google Scholar

[20] J. M. Khatib, R. M. Clay, Absorption characteristics of metakaolin concrete, Cem. Concr. Res. 34 (2004) 19-29.

Google Scholar

[21] A. Ramezanianpour, H. B. Jovein, Influence of metakaolin as supplementary cementing material on strength and durability of concretes, Constr. Build. Mater. 30 (2012) 470-479.

DOI: 10.1016/j.conbuildmat.2011.12.050

Google Scholar

[22] R. Ferreira, J. Castro-Gomes, P. Costa, R. Malheiro, Effect of metakaolin on the chloride ingress properties of concrete, KSCE J. Civil Eng. 20 (2016) 1375-1384.

DOI: 10.1007/s12205-015-0131-8

Google Scholar

[23] A. M. Neville, Properties of concrete, (1995).

Google Scholar

[24] A. Ramezanianpour, V. Malhotra, Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume, Cem. Concr. Comp. 17 (1995) 125-133.

DOI: 10.1016/0958-9465(95)00005-w

Google Scholar

[25] A. Sarkar, A. K. Sahani, D. K. S. Roy, A. Samanta, Compressive Strength of Sustainable Concrete Combining Blast Furnace Slag and Fly Ash, IUP J. Struct. Eng. 9 (2016) 17.

Google Scholar

[26] S. Zhutovsky, R. D. Hooton, Mat-742: Effect Of Supplementary Cementitious Materials On The Resistance Of Mortar To Physical Sulfate Salt Attack, (2016).

Google Scholar

[27] M. Thomas, Optimizing the use of fly ash in concrete vol. 5420: Portland Cement Association Skokie, IL, USA, (2007).

Google Scholar